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a b s t r a c t 

The pre-positioning problem is an important part of emergency supply. Pre-positioning de- 

cisions must be made before disasters occur under high uncertainty and only limited dis- 

tribution information. This study proposes a distributionally robust optimization model for 

the multi-period dynamic pre-positioning of emergency supplies with a static pre-disaster 

phase and a dynamic post-disaster phase. In the post-disaster phase, the uncertain de- 

mands are time varying and have partial distribution information that belongs to a given 

family of distributions. The family of distributions is described by a given perturbation 

set based on historical information. Therefore, the proposed model forms a semi-infinite 

programming problem with ambiguous chance constraints, which typically would be com- 

putationally intractable. We refine the bounded perturbation sets (box, box-ball and box- 

polyhedral) and develop computationally tractable safe approximations of the chance con- 

straints. Finally, a realistic application to the Circum-Bohai Sea Region of China is presented 

to illustrate the effectiveness of the robust optimization model. 

© 2020 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Currently, natural disasters (earthquakes, floods, hurricanes, tornadoes and wildfires) are increasing and affecting the

safety of people’s lives and property. Due to the enormous loss caused by these disasters, growing attention is being given

to the pre-positioning of emergency supply problem, which belongs to the preparedness and response stages in disaster

management [1,2] . The pre-positioning of emergency supply problem ensures that emergency supplies can be delivered to

the affected area in a timely and effective manner to maximize the role of emergency supplies. The pre-positioning process

can be divided into two states: the natural state (pre-disaster) and the emergency state (post-disaster). The key decisions

for the natural state are the number and locations of facilities, as well as the allocation of the multiple emergency supplies.

In the emergency state, the pre-positioned emergency supplies should be sufficient to meet all demands in the affected

areas at the fastest speed and lowest cost. Since emergency supplies and budgets are limited, it is challenging to find a good

trade-off between maximizing demand coverage and minimizing the total costs in the preparedness stage. 

Supply delay is a major obstacle to the distribution of commodities. Studies of static emergency supply pre-positioning

problems often address the commodity co-ordination of supply and demand, disregarding the time and manner of
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commodity distribution. In general, the number of affected people arriving at a given safe area is unknown before the

disaster and information updates happen over time during an event [3] . Thus, few studies have explored the multi-period

dynamic decision problem, which determines the most beneficial manner for distributing commodities in each period based

on time-variant demand. This paper develops a dynamic emergency supplier pre-positioning model that can effectively

reduce the delay problem in commodities distribution. 

The “multi-period dynamics” in our study include two aspects of the emergency states. First, the transportation distri-

bution process of emergency commodities in an emergency state is designed over a planning horizon consisting of several

days. During the planning horizon, the proposed model is updated each day by incorporating new information on the de-

mand quantity and the transportation quantity. Second, because it is a long-term emergency response operation, we assign

a time-variant penalty that minimizes the total waiting time. The decision maker must plan pre-disaster decisions on fa-

cilities and emergency commodities by incorporating dynamic distribution decisions. The dynamic features of emergency

supplies also give feedback on the decision making in the static phase. Thus, we form a model in which emergency supplies

decisions are influenced through the dynamic pre-allocation decision in the post-disaster phase. 

Uncertainty in demand can fluctuate unexpectedly due to many sources. These sources include the number of casualties,

damage to buildings, weather conditions and so on. Accurate demand assessment, which is related to the number of affected

people, is essential for achieving accurate models and maximizing the benefits of commodities utilization. To measure de-

mand for emergency supplies, we use a probability prediction method based on the historical data of disasters. Considering

the low probability of disaster occurrence and the long-term strategy of establishing an emergency supplies warehouse,

to reduce the impact of a disaster and ensure a certain economy, decisions regarding emergency supplies pre-positioning

should be robust. Such robustness is crucial for long-term decisions because the decisions made at the pre-disaster phase

are of a strategic type and cannot be changed easily. To address these issues, this paper studies the pre-positioning of

emergency supplies problem using a distributionally robust optimization approach. The approach focuses on managing the

random variables with only partial distribution information. In addition, similar to stochastic programming, the decision

may not meet the constraints in a highly uncertain environment, i.e., the approach must allow for a certain degree of con-

straint violation. Thus, we develop an ambiguous chance constraint programming model and build a safe approximation of

the chance constraint to overcome the intractable formulation. 

In general, government organizations often perform all of the operations over the disaster life cycle. When a disaster

occurs, there is considerable pressure to deliver emergency supplies to the affected areas immediately. Time is a scarce

resource used to measure the performance of a humanitarian response to a disaster. Thus, shortages and the incorrect

delivery of commodities have a crucial effect on the rescue. The dynamic emergency supply pre-positioning model can

enhance emergency response capacity and preparedness for disasters. In addition, the distributionally robust optimization

approach can achieve a higher degree of demand satisfaction at a lower cost under uncertain environments. 

The main contributions of this paper are summarized as follows: 

• This paper develops a multi-period dynamic emergency supplies problem with a static pre-disaster phase and a dynamic

post-disaster phase. The post-disaster phase includes a number of periods and time-variant uncertain demand. In addi-

tion, a time-variant penalty function is introduced to describe the loss resulting from time delays for dynamic demand. 
• This paper establishes a distributionally robust optimization model with ambiguous chance constraints for the pre-

positioning of emergency supply problems. The proposed model involved semi-infinite programming and is typically 

computationally intractable. We refine the bounded perturbation sets (box, box-ball and box-polyhedral) and develop a

computationally tractable safe approximation of the chance constraints. 
• This paper studies a realistic world case (the Circum-Bohai Sea Region). Numerical experiments are provided to illustrate

the value of distributionally robust optimization in the emergency supply problem and demonstrate the performance of

the dynamic model compared with the static model. 

The rest of this paper is organized as follows. In Section 2 , the relevant literature is reviewed. Section 3 develops a

novel dynamic pre-positioning of emergency supplies model. In Section 4 , robust optimization is applied in the model under

demand uncertainty. Section 5 presents numerical experiments to illustrate the robustness and effectiveness of the proposed

robust optimization method. Some managerial insights are summarized in Section 6 . The conclusions and future research

are presented in the final section. 

2. Literature review 

This section presents a review of the emergency supplies pre-positioning literature to establish a framework for this

research. The literature related to our problem can be categorized into three streams: the pre-positioning of emergency

supplies problem, the dynamic emergency supplies problem, and uncertainty modeling in the pre-positioning of emergency

supplies. 

The pre-positioning of emergency supplies problem has focused mainly on the process of location with stock pre-

positioning and supplies pre-allocation. The decisions of stock pre-positioning take place in the preparedness phase

[4–7] , while the decisions of supplies pre-allocation are focusing on the response phase [8–11] . In different application

backgrounds, the decision makers often utilize various transportation modes to carry the commodities, medical staffs, and

relief workers to the affected areas. Ahmadi et al. [12] formulated a mixed integer linear programming to determine the
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locations of local depots and vehicle routings in San Francisco city. Barbarosoglu et al. [13] proposed a hierarchical multi-

criteria methodology for helicopter logistics planning to transport wounded people. Due to the damage of roads after a

disaster, [14] also used helicopters to transport relief personnel and medicine at first 72 h. Most of these papers dedicated

to a city or a small region. The emergency supplies pre-positioning problem is a long-term preparedness strategy to prevent

the occurrence of disasters. For some countries with large populations and territories, it is impossible to pre-positioning a

large facility in a small area. In our study, we try to develop a model to support decision-making for a large region. It is

of practical significance to plan different size facilities in large regions or multiple cities. In addition, due to the large scale

areas, railway mode is suitable for long-distance transportation. 

Multi-period dynamic emergency supply problem adequately represents that the traffic network information can change

over time based on different conditions. When disaster strikes, the relevant data may change unexpectedly. These changes

will have an impact on the emergency plans, and it is necessary to adjust the plans incorporating new information. Thus, this

problem can be modeled statically in pre-disaster phase and dynamically in post-disaster phase [15] , which has been studied

in several literature by optimizing different objectives, such as the expected time-to-respond [16] , the unsatisfied demand

and the risk [17] , the total weighted response time [18] and the performance of different preparedness scenarios [19] . Rawls

and Turnquist [3] studied a dynamic allocation model that optimized deliver planning for satisfying short-term demands

for emergency supplies. The aim of the model was meeting the demand from distant suppliers in the first 72 h. Yi and

Özdamar [20] proposed an integrated location-routing model for coordinating logistics support and evacuation operations

in disaster response activities. Bozorgi-Amiri and Khorsi [21] presented a multi-objective dynamic stochastic programming

model by integrating pre-disaster plans and post-disaster decisions. All these papers dedicated to short-term emergency

supply, only a very small proportion took a point of view on the long-term preparedness of emergency supply. This paper

aims to address medium-and-large-scale disasters that needs a long time rescue. 

In emergency supply operations, the exact information on the distribution of uncertainties is not usually known in ad-

vance. Due to the unpredictability of time, place, population density and magnitude of the disaster, there exists some un-

certainties, such as demand uncertainty [22,23] , travel times uncertainty [24] , discount factor uncertainty [25] and cost

uncertainty [26] , that may cause the loss of life and property and can be seen as significant penalty costs. To eliminate the

risk of uncertainty, various optimization methods have been documented in the literature. Considering the uncertainty of

the events location and severity, [27] presented a stochastic optimization model to plan the strategic arrangement of budget-

limited supplies and assets in advance of major disasters. Mohamadi and Yaghoubi [28] proposed a bi-objective stochastic

model for emergency network design with backup services in the event of a disaster interruption. Glock et al. [29] de-

veloped an economic order quantity model with fuzzy demand and were first to incorporate learning in fuzziness in an

inventory model. Bai et al. [30] built a fuzzy value-at-risk model for the pre-positioning emergency supplies problem with

multi-affected areas and multi-relief. The transportation cost, supply, demand and capacity were represented as fuzzy pa-

rameters with variable possibility distributions. The above stochastic and fuzzy methods are proposed to handle uncertainty

under partial distribution information. 

When the distribution information of uncertainty is partially known, robust optimization would be an appropriate re-

search tool [31,32] . In recent years, robust optimization methods in the emergency supplies pre-positioning problem is a

hot research topic. By considering expected uncovered demand as an objective function, [33] proposed a robust bi-level

optimization model for the relief distribution network. Zokaee et al. [34] proposed a three-level robust relief chain mode

in which the travel time parameters, demand, supply, and cost were subject to uncertainty. Hu et al. [35] addressed a

bi-objective robust emergency resource allocation problem to maximize efficiency and fairness under different sources of

uncertainty. Haghi et al. [36] developed a multi-objective robust programming model for goods and casualty logistics under

demand and resource uncertainties. They attempted to maximize the response level to the medical needs of the casual-

ties and minimize the total costs of the preparedness and response phases. Najafi et al. [37] applied robust optimization to

manage the logistics of relief commodities and injured people in the post-disaster phase. Ben-Tal et al. [38] built an affinely

adjustable robust counterpart approach to dynamically assigning emergency response and evacuation traffic flow planning

with time-dependent demand uncertainty. In [39] , a min-max robust model is proposed for the location and emergency

inventory pre-positioning problem. They captured the uncertainties in both the left- and right-hand-side parameters. 

There is still a gap between the conservatism of robust optimization and the specificity of stochastic programming, and

solutions to uncertain optimization problems are sought for partially characterized uncertainty distributions [40] . Distribu-

tionally robust optimization [40–42,45] is suitable for this case and has been applied to many topics, such as the newsven-

dor problem [43] , power flow [44] , the lot-sizing problem [46] , and the medical appointment scheduling problem [47] . Our

proposed model is the first to apply distributionally robust optimization into the pre-positioning of emergency supplies

problem with dynamic post-disaster decisions. The advantage of the distributionally robust model is demonstrated through

a comparison with the deterministic model and the robust model using the same case study. 

3. A new robust emergency supplies pre-positioning model 

Pre-positioning emergency supplies is a means for increasing preparedness for natural disasters. The main goal

of emergency supplies is to minimize the average response time of the pre-positioning network after a disaster and

ultimately reduce the loss of life and property. Sufficient commodity reserves are necessary for timely and effective

responses to sudden disasters. However, with the uncertainty in the occurrence time of disasters, the commodities may
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not be used for one or even several years. Thus, long-term storage may expensive in terms of routine management

and wastage. Due to the limited reserve funds, many studies on emergency rescue focus on addressing small-scale

emergencies, and few studies address large-scale, wide-impact, long-duration emergencies. Large-scale emergency com- 

modity reserves require a more reasonable strategy. In this section, we develop a multi-period dynamic emergency

supply pre-positioning model with a high coverage area. The model has a higher rescue capability with a certain

cost. 

In the pre-positioning problem, there are two phases: the pre-disaster phase and the post-disaster phase. In the pre-

disaster phase, the inventory size, the location of facilities and the quantities of emergency commodities to purchase are the

main decisions. Because it reflects long-term security planning, the model will minimize cost by determining the above pa-

rameters before a disaster. In the post-disaster phase, we study a dynamic emergency commodity allocation model. The ob-

jective of this phase is to minimize the transshipment, holding and unmet demand penalty cost based on the pre-positioning

network within a given horizon. 

To build the pre-positioning problem, the required notations are as follows: 

Sets: 

T : set of planning horizons; 

N: set of nodes; 

A : set of directed arcs; 

K: set of resources of type; 

L : set of different facility sizes. 

Parameters: 

F il : the fixed cost of opening a facility of size category l at location i ; 

a k : unit acquisition cost of commodity k ; 

c k : unit distance cost of transporting commodity k ; 

d t 
ik 

: the forecast demand for commodity k at location i on day t; 

h k : unit holding cost for commodity k ; 

m k : unit unmet demand penalty cost of commodity k ; 

v k : unit space requirement for commodity k ; 

γl : the overall capacity of a facility in category l; 

b k : unit weight of commodity k ; 

B i j : the overall bearing capacity of link (i, j) ; 

r i j : distance across link (i, j) . 

Decision Variables: 

y il : a binary decision variable indicating whether a facility with size l is located at node i or not; 

q t 
ik 

: amount of commodity k pre-positioned at location i on day t; 

Q ik : amount of commodity k pre-positioned at location i ; 

x t 
i jk 

: amount of commodity k shipped across the link (i, j) on day t; 

w 

t 
ik 

: shortage of commodity k at location i on day t; 

z t 
ik 

: amount of unused commodity k at location i on day t . 

We consider a set of essential commodities that may be pre-positioned in storage facilities and for which there is likely

to be demand after an event such as an earthquake. The commodities can be pre-positioned at location i if a storage facility

of a specific size l is made available. The storage facility location and commodities stocking decisions should be made before

a disaster. When a disaster occurs, the various commodities are distributed from the storage facilities to the affected areas

through a transportation network to meet demand. From the above discussion, we can formulate an optimization problem

as follows. 

For costing purposes, the total cost of the problem includes the fixed cost, acquisition cost and transshipment cost, as

well as holding cost and unmet demand penalty cost. These costs reside in two phases: the pre-disaster phase and the post-

disaster phase. In the pre-disaster phase, we denote �i ∈ N �l ∈ L F il y il as the fixed cost for opening a facility. In an emergency

supplies pre-positioning problem, the transportation of a commodity is a pre-allocation activity. The notation q t 
ik 

represents

the amount of commodity k pre-positioned at location i on day t . Then, various commodities Q ik can be stocked at the

facilities, where Q ik = 

∑ 

t∈ T q t ik . The acquisition cost is �i ∈ N �k ∈ K a k Q ik . In the response phase, the various commodities q t 
ik 

are shipped across a transportation network to meet the demand in a given planning horizon. Let 
∑ 

t∈ T 
∑ 

(i, j) ∈ A 
∑ 

k ∈ K c k r i j x 
t 
i jk 

be the cost of transporting commodities across link ( i, j ) in the transportation network. The cost of holding the commodities

that are not used at locations is denoted 

∑ 

t∈ T 
∑ 

i ∈ N 
∑ 

k ∈ K h k z t ik . 
In one time period, it is almost unavoidable for some affected people to not receive a delivery; then these affected people

will have to wait for the next delivery period to receive aid. A penalty function is induced into the model to reduce the more

severe loss of life and property after a disaster. Wen et al. [48] utilized a penalty function that increases quadratically with

customer waiting time. In the event of an emergency, the affected people will suffer still greater losses with longer waiting

times. Thus, to minimize the total number of affected people waiting, we assign a penalty function that increases cubically

with the delay time, i.e., M 

t 
k 

= m k ( 
t 
T ) 

3 , where m k is the unit penalty cost, and t represents the day when commodities are

delivered. The penalty function tends to provide shorter waiting times for several affected people rather than longer waiting

times for a few [48] . Then, the penalty cost is defined as M 

t 
k 
w 

t 
ik 

. 

Based on the above description, we obtain the following objective function, which includes the cost of the pre-positioning

location of facilities, the acquisition of commodities, the transportation of commodities, the holding of commodities and the
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unmet demand penalty of commodities. ∑ 

i ∈ N 

∑ 

l∈ L 
F il y il + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
a k q 

t 
ik + 

∑ 

t∈ T 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k r i j x 

t 
i jk + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
(h k z 

t 
ik + M 

t 
k w 

t 
ik ) . (1)

We assume that the commodities require one day to be transported to a location. Based on this, we present the flow

conservation constraint for commodity k at location i on day t . ∑ 

( j,i ) ∈ A 
x t−1 

jik 
+ q t−1 

ik 
+ z t−1 

ik 
− z t ik = 

∑ 

(i, j) ∈ A 
x t−1 

i jk 
+ d t−1 

ik 
+ w 

t−1 
ik 

− w 

t 
ik , ∀ t ∈ T , i ∈ N, k ∈ K, (2)

where the left hand side of the equation represents the total amount of commodity k shipped into location i , pre-positioned

at location i and unused at location i on day t − 1 minus the amount of commodity k unused at location i on day t , and the

right hand side of the equation represents the total amount of commodity k shipped out of location i , demand at location i

and shortage at location i on day t − 1 minus the amount of the shortage in commodity k at location i on day t . The dynamic

of flow conservation is that the balance of commodities is determined by their inflow and outflow and their changes at each

node and on each day. Note that the shortage of commodities is zero at the initial moment (pre-disaster), i.e., w 

0 
ik 

= 0 . The

unused and unsatisfied demands are important concerns of the emergency preset problem. In the actual rescue process, the

amount of unused and unsatisfied commodities z t−1 
ik 

and w 

t−1 
ik 

still need to be overlying in the next time period. Therefore,

instead of an equilibrium equation for each period of time, the decision variables of unused and unsatisfied demands have

an iterative relation. According to the recursive relation, the flow conservation constraint (2) can be reformulated as 

w 

t 
ik − z t ik = 

t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk −

∑ 

( j,i ) ∈ A 
x t 

′ 
jik + d t 

′ 
ik − q t 

′ 
ik 

) 

, ∀ t ∈ T , i ∈ N, k ∈ K. (3)

The pre-positioned commodities in facilities should not exceed the facility capacity, and the allocated commodities in the

link should not exceed the arc bearing capacity. According to this situation, Constraint (4) ensures that the pre-positioned

commodities stocked in facility i are limited by its capacity, which is the volume of purchased goods at any given open

facility. Constraint (5) limits the amount of relief commodities in link ( i, j ). ∑ 

t∈ T 

∑ 

k ∈ K 
v k q t ik ≤

∑ 

l∈ L 
γl y il , ∀ i ∈ N, (4)

∑ 

k ∈ K 
b k x t i jk ≤ B i j , ∀ t ∈ T , (i, j) ∈ A. (5)

In general, only one facility is available at a candidate node, and Constraint (6) ensures that the number of open facilities

at node i is one. ∑ 

l∈ L 
y il ≤ 1 , ∀ i ∈ N. (6)

To optimize the pre-positioned network, the model may assign some commodities from one zero-commodities node to

another in advance, which leads to a greater shortage at this mode. However, this process is impossible in real life because

the outflow of emergency commodities at a node on day t must be determined by the pre-positioned or inflow prior to that

day. To model this situation, Constraint (7) refers to the commodities flow restriction constraint, which states that it is only

possible to ship a commodity from node i in period t when there is an unused quantity of commodity z t−1 
ik 

at location i on

day t − 1 . The outflow of node i should be restricted by the difference between the unused and the unmet quantities of a

commodity on the day t . ∑ 

(i, j) ∈ A 
x t i jk ≤ z t ik − w 

t 
ik , ∀ t ∈ T , i ∈ N, k ∈ K. (7)

Considering the realistic nature of the model, feasible regions for decision variables are enforced by the following con-

straints: 

y il ∈ (0 , 1) , ∀ i ∈ N, l ∈ L, (8)

q t ik , w 

t 
ik ≥ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, (9)

x t i jk ≥ 0 , ∀ t ∈ T , (i, j) ∈ A, k ∈ K. (10)

Constraint (8) states that y il equals 1 if there is a supply facility of capacity category l located at node i and 0 otherwise.

The remaining constraints (9) and (10) are non-negativity conditions. 

It is clear that usually when disasters occur, the exact demand information is not known in advance. In this study, we

develop the uncertain formulation of the pre-positioning model with demand uncertainty. It is assumed that the uncertainty
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of the demand 

˜ d t 
ik 

is affinely dependent on a set of independent random variables ζ t 
ik 

taking values in given finite segments

[-1,1] and following a distribution symmetric with respect to zero, i.e., 

˜ d t 
′ 

ik = d̄ t 
′ 

ik + 

ˆ d t 
′ 

ik ζ
t ′ 
ik , ∀ t ∈ T , t ′ ∈ { 0 , ..., t − 1 } , i ∈ N, k ∈ K, 

where d̄ t 
ik 

is the nominal value of demand, and 

ˆ d t 
ik 

represents positive constant perturbation. 

Ideally, the decision maker may prefer a set of solutions that make the constraint feasible with probability 1. However,

in reality, the solutions do not need to be overly conservative and can allow for a certain degree of constraint violation. This

approach provides a probabilistic guarantee of robust solution feasibility when uncertain parameters are perturbed. Altering

Eq. (3) , we can build the following chance constraint with at least probability 1 − εt 
ik 

: 

Pr ˜ d t 
′ 

ik 
∼P 

{
t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk 

− ∑ 

( j,i ) ∈ A 
x t 

′ 
jik 

+ 

˜ d t 
′ 

ik 
− q t 

′ 
ik 

)
≤ w 

t 
ik 

− z t 
ik 

}
≥ 1 − εt 

ik 
, ∀ t ∈ T , i ∈ N, k ∈ K, (11) 

where εt 
ik 

∈ (0 , 1) , and P is the known probability distribution of random variables ˜ d t 
′ 

ik 
. Note that, to compute (11) , the ran-

dom variables are usually distributed according to an exact distribution. However, in practice, it is difficult to obtain the

distribution information of uncertain parameters; these usually have only partial or no information on probability distribu-

tion P , which belongs to a given family P . For all probability distributions in P, we can obtain the following model with the

ambiguous chance constraint: 

min y,q,x,z,w 

∑ 

i ∈ N 

∑ 

l∈ L 
F il y il + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
a k q 

t 
ik + 

∑ 

t∈ T 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k r i j x 

t 
i jk + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
(h k z 

t 
ik + M 

t 
k w 

t 
ik ) 

s . t . Pr ζ t ′ 
ik 

∼P 

{
t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk −

∑ 

( j,i ) ∈ A 
x t 

′ 
jik + d̄ t 

′ 
ik + 

ˆ d t 
′ 

ik ζ
t ′ 
ik − q t 

′ 
ik 

)
≤ w 

t 
ik − z t ik 

}
≥ 1 − εt 

ik 
, ∀ P ∈ P, t ∈ T , i ∈ N, k ∈ K, 

constraints (4) − (10) . 

(12) 

The model (12) is a distributionally robust optimization model with binary variables, and it is severely intractable. In the

next section, we will replace the ambiguous chance constraint with its computationally tractable safe approximation. 

4. Safe approximation of pre-positioning model 

The aim of this section is to solve the probabilistic optimization problem (12) with an efficient method. A natural method

is to replace the intractable constraint (11) with its safe approximation. In model (13) , S is a system of computationally

tractable convex constraints on variables ( y, q, x, z, w ) and additional variables u . Then, we can replace the intractable

problem (12) with its computationally tractable approximation S . 

min 

y,q,x,z,w,u 

{ 

(y, q, x, z, w, u ) satisfies S 
f : 

constraints (4) − (10) 

} 

, (13) 

where the ( y, q, x, z, w ) component of every feasible solution of S is feasible for the chance constraint (11) . 

For the sake of simplicity, we consider the following scalar chance constraint inequality in the equivalent form: 

P (ϕ) := Pr ζ t ′ 
ik 

∼P 

{ 

ζ : ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

≤ εt 
ik , ∀ P ∈ P, t ∈ T , i ∈ N, k ∈ K, (14) 

where 

ϕ 

t 
ik = 

t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk −

∑ 

( j,i ) ∈ A 
x t 

′ 
jik + d̄ t 

′ 
ik − q t 

′ 
ik 

) 

− (w 

t 
ik − z t ik ) , 

ψ 

t ′ 
ik = 

ˆ d t 
′ 

ik . 

Consider the case of chance constraint (14) , where the uncertainty ζ t ′ 
ik 

is a random variable with a probability distri-

bution P known to belong to a given family P . The family P is comprised of all distributions satisfying independent ran-

dom perturbations with zero mean and subjected to a symmetric probability distribution. Under these assumptions, for all

t ∈ T , i ∈ N , k ∈ K , consider the body of probability P ( ϕ) as 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 . (15) 

We assume that the uncertain data ζ t ′ 
ik 

resides in a given convex compact perturbation set Z t 
ik 

[32] . Consider the problem

of bounding from above the probability P ( ϕ) of the event ϕ 

t 
ik 

+ 

∑ t−1 
t ′ =0 

ζ t ′ 
ik 
ψ 

t ′ 
ik 

> 0 . Let us set �(αt 
ik 

[ ψ 

0 
ik 

; ... ;ψ 

t−1 
ik 

]) =
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(αt 
ik 
) 

2 ∑ t−1 
t ’ =0 

1 
2 (ψ 

t ’ 

ik 
) 

2 
. This should be a convex function such that E { exp { αt 

ik 
[ ϕ 

t 
ik 

+ 

∑ t−1 
t ′ =0 

ζ t ′ 
ik 
ψ 

t ′ 
ik 

] }} ≤ exp { αt 
ik 
ϕ 

t 
ik 

+
�(αt 

ik 
[ ψ 

0 
ik 

; ... ;ψ 

t−1 
ik 

]) } . The next step, we have P (ϕ) ≤ E { exp { αt 
ik 

[ ϕ 

t 
ik 

+ 

∑ t−1 
t ′ =0 

ζ t ′ 
ik 
ψ 

t ′ 
ik 

] }} ≤ exp { αt 
ik 
ϕ 

t 
ik 

+ �(αt 
ik 

[ ψ 

0 
ik 

; ... ;ψ 

t−1 
ik 

]) } ≤
εt 

ik 
. Thus, for a given εt 

ik 
, and there exists αt 

ik 
> 0 such that αt 

ik 
ϕ 

t 
ik 

+ �(αt 
ik 

[ ψ 

0 
ik 

; ... ;ψ 

t−1 
ik 

]) ≤ ln (εt 
ik 
) , which is a safe

approximation of the chance constraint (14) . And the set D 

t 
ik 

= { ϕ 

t 
ik 

: ∃ αt 
ik 

> 0 : f (αt 
ik 
) ≡ αt 

ik 
ϕ 

t 
ik 

+ �(αt 
ik 

[ ψ 

0 
ik 

; ... ;ψ 

t−1 
ik 

]) ≤
ln (εt 

ik 
) , t ∈ T , i ∈ N, k ∈ K} is contained in the feasible set of the chance constraint (14) . The next step, we give an-

other safe approximation to reduce the conservatism of the above approximation. When ϕ 

t 
ik 

≥ 0 , the function f (αt 
ik 
)

attains its minimum on 0, i.e., f (0) = 0 . When ϕ 

t 
ik 

< 0 , the function f (αt 
ik 
) attains its minimum on 

−(ϕ t 
ik 

) 
2 

2 
∑ t−1 

t ’ =0 
(ψ 

t ’ 

ik 
) 

2 , i.e.,

f ( 
−ϕ t 

ik ∑ t−1 

t ’ =0 
(ψ 

t ’ 

ik 
) 

2 ) = 

−(ϕ t 
ik 

) 
2 

2 
∑ t−1 

t ’ =0 
(ψ 

t ’ 

ik 
) 

2 . In sum, when αt 
ik 

= 0 or αt 
ik 

= 

−(ϕ t 
ik 

) 
2 

2 
∑ t−1 

t ’ =0 
(ψ 

t ’ 

ik 
) 

2 , we arrive at the lower bound on above approxi-

mation, i.e., inf αt 
ik 

> 0 { f (αt 
ik 
) } ≤ ln (εt 

ik 
) . Since ln (εt 

ik 
) < 0 , the corresponding safe tractable approximation of (14) is given by

the following inequality: 

ϕ 

t 
ik + 

√ 

2 ln (1 /εt 
ik 
) 

√ 

t−1 ∑ 

t ′ =0 

(ψ 

t ′ 
ik 
) 2 ≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K. (16)

Then, replacing the chance constraint in (14) with its safe tractable approximations rendered above, the original proba-

bilistic violation is satisfied. When we set 
t 
ik 

= 

√ 

2 ln (1 /εt 
ik 
) , we arrive at another safe tractable approximation 

ϕ 

t 
ik + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

(ψ 

t ′ 
ik 
) 2 ≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K (17)

of the chance constraint (14) . With properly defined 
t 
ik 

, every feasible solution of (17) is feasible for the chance constraint

(14) . This inequality is simply the robust counterpart form of inequality (15) , with the ball perturbation set Z t Ball 
ik 

= { ζ :√ 

t−1 ∑ 

t ′ =0 

(ζ t ′ 
ik 

) 2 ≤ 
t 
ik 
} . 

Based on the above observation, we arrive at the following proposition: 

Proposition 1. By adopting the parameter that satisfies the family P comprised of zero mean probability distributions, constraint

(17) is the robust counterpart of inequality (15) under perturbation set Z t Ball 
ik 

, and is a computationally tractable safe approxima-

tion of chance constraint (14) . 

Proof. See Appendix A.1 for the proof. �

Consider the case that ignores the stochastic nature information of uncertain data and assumes that ζ t ′ 
ik 

just vary in

Z t 
′ Box 

ik 
= [ −θ t ′ 

ik 
, θ t ′ 

ik 
] . The box safe approximation of the chance constraint (14) is 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

θ t ′ 
ik | ψ 

t ′ 
ik | ≤ 0 . (18)

The box robust counterpart mentioned above guarantees “100% immunization against perturbations,” which means that

every robust solution is feasible for any realization of uncertainty (i.e., the randomly perturbed inequality in question with

probability 1). The conservatism comparison of the above two safe approximations is determined by the dimension t of

the uncertain parameter space. When 
t 
ik 

≥ θ t ′ 
ik 

√ 

t ( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the diameter of perturbation set Z t Ball 
ik 

is larger than

that of perturbation set Z t 
′ Box 

ik 
. In contrast, box one is more conservative. To obtain a less conservative robust optimiza-

tion approximation with the same degree of constraint violation, we consider the following perturbation sets generated by

combining the ball or polyhedron perturbation set with the box perturbation set. 

First, we consider the perturbation set that is the intersection of the box and the ball: 

Z t BoxBall 
ik = 

{ 

ζ
∣∣∣| ζ t ′ 

ik | ≤ θ t ′ 
ik , 

√ 

t−1 ∑ 

t ′ =0 

(ζ t ′ 
ik 
) 2 ≤ 
t 

ik 

} 

, (19)

where θ t ′ 
ik 

and 
t 
ik 

are the adjustable parameters controlling the size of the perturbation set. 

Since the approximation of the robust counterpart type is a semi-infinite programming problem, in order to reformulate

(15) as a tractable optimization problem, we often use the theorem of duality to eliminate the left hand maximization and

incorporate the dual formulation into the original constraint. 
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Theorem 1. Given the defined demand perturbation set Z BoxBall , then the corresponding box-ball robust counterpart of inequality

(15) is given by the following conic quadratic constraint: ⎧ ⎪ ⎨ 

⎪ ⎩ 

ϕ 

t 
ik 

+ 

[ 

t−1 ∑ 

t ′ =0 

θ t ′ 
ik u 

t ′ 
ik + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

] 

≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

−u 

t ′ 
ik 

≤ ψ 

t ′ 
ik 

− η1 
t ′ 
ik 

≤ u 

t ′ 
ik 
, ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, 

(20) 

where u t 
′ 

ik 
and η1 

t ′ 
ik 

represent the dual variables. 

Proof. See Appendix A.2 for the proof. �

With the different values of θ t ′ 
ik 

and 
t 
ik 

, the coincidence state between the box and the ball also changes. When 
t 
ik 

≤ θ t ′ 
ik 

( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the ball is embedded into the box. The uncertain space is determined by the ball perturbation set. When

θ t ′ 
ik 

≤ 
t 
ik 

≤ θ t ′ 
ik 

√ 

t ( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the box and ball intersect, where t is the dimension of the uncertain parameter ζ t ′ 
ik 

.

The uncertain space is determined by the two perturbation sets. When θ t ′ 
ik 

√ 

t ≤ 
t 
ik 

( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the box is ringed

by the ball. The uncertain space is determined by the box perturbation set, which is the same as (18) . 

Second, we can further extend the box-ball perturbation set to the larger and simpler set, that is, the box-polyhedral

perturbation set, 

Z t Boxpolyhedral 

ik 
= 

{ 

ζ
∣∣∣| ζ t ′ 

ik | ≤ θ t ′ 
ik , 

t−1 ∑ 

t ′ =0 

| ζ t ′ 
ik | ≤ t 

ik 

} 

, (21) 

where θ t ′ 
ik 

and t 
ik 

are the adjustable parameters controlling the size of the perturbation set. 

We also use the theorem of duality to reformulate (15) into a tractable optimization form. 

Theorem 2. Given the defined demand perturbation set Z BoxPolyhedral , then the corresponding box-polyhedral robust counterpart

of inequality (15) is equivalent to the following constraint: ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ϕ 

t 
ik 

+ 

[
t−1 ∑ 

t ’ =0 

θ t ’ 

ik 
η1 

t ’ 

ik 
+ t 

ik 
u 

t 
ik 

]
≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

η1 
t ’ 

ik 
+ u 

t 
ik 

≥ ψ 

t ’ 

ik 
, ∀ t ∈ T , t ’ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, 

η1 
t ’ 

ik 
, u 

t 
ik 

≥ 0 , ∀ t ∈ T , t ’ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, 

(22) 

where η1 
t ′ 
ik 

and u t 
ik 

represent the dual variables. 

Proof. See Appendix A.3 for the proof. �

Similarly, with the different values of θ t ′ 
ik 

and t 
ik 

, the coincidence state between the box and the polyhedron also

changes. When t 
ik 

≤ θ t ′ 
ik 

( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the polyhedron is embedded into the box. The uncertain space is determined

by the polyhedral perturbation set. When θ t ′ 
ik 

≤ t 
ik 

≤ θ t ′ 
ik 

t ( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), there is an intersection between the box and

the polyhedron, where t is the dimension of the uncertain parameter ζ t ′ 
ik 

. The uncertain space is determined by the two

perturbation sets. When θ t ′ 
ik 

t ≤ t 
ik 

( ∀ t ′ ∈ { 0 , . . . , t − 1 } ), the box is embraced by the polyhedron. The uncertain space is de-

termined by the box perturbation set, which is the same as (18) . 

Next, based on the box-ball and box-polyhedral perturbation sets, we arrive at the following results. 

Theorem 3. In the case of constraint (20) , if { ζ t ′ 
ik 
} t ′ ∈{ 0 , ... ,t−1 } are independent and subject to a symmetric probability distribution,

then for every θ t 
ik 

, 
t 
ik 

≥ 0 , the following probability of constraint violation holds that 

P r 

{ 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

≤ exp {−
t 2 
ik / (2(θ t 

ik ) 
2 ) } , ∀ t ∈ T , i ∈ N, k ∈ K, (23)

where exp {−
t 2 
ik 

/ (2(θ t 
ik 
) 2 ) } represents the degree of the constraint violation, i.e., the probability that the constraint is violated.

Every feasible solution to these constraints is feasible for the chance constraint inequality (14) with probability of at least 1 −
exp {−
t 2 

ik 
/ (2(θ t 

ik 
) 2 ) } . 

Proof. See Appendix A.4 for the proof. �

In addition, to satisfy the constraint with probability at least 1 − εt 
ik 

, we denote exp {−
t 2 
ik 

/ (2(θ t 
ik 
) 2 ) } ≤ εt 

ik 
. Then, we can

obtain the safe parameter with 
t 
ik 

≥ θ t 
ik 

√ 

2 ln (1 /εt 
ik 
) . 

For the box+polyhedral uncertainty set, we obtain a similar theorem. 
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Fig. 1. The map of Circum-Bohai Sea Region since 1968. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4. In the case of constraint (22) , if { ζ t ′ 
ik 
} t ′ ∈{ 0 , ... ,t−1 } are independent and subject to a symmetric probability distribution,

then for every θ t 
ik 

, t 
ik 

≥ 0 , the following probability of constraint violation holds that 

P r 

{ 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

≤ exp {−t 2 
ik / (2 t(θ t 

ik ) 
2 ) } , ∀ t ∈ T , i ∈ N, k ∈ K, (24)

where exp {−t 2 
ik 

/ (2 t(θ t 
ik 
) 2 ) } represents the degree of constraint violation, i.e., the probability that the constraint is violated.

Every feasible solution to these constraints is feasible for the chance constraint inequality (14) with probability of at least 1 −
exp {−t 2 

ik 
/ (2 t(θ t 

ik 
) 2 ) } . 

Proof. See Appendix A.5 for the proof. �

In addition, to satisfy the constraint with probability of at least 1 − εt 
ik 

, we denote exp {−t 2 
ik 

/ (2 t(θ t 
ik 
) 2 ) } ≤ εt 

ik 
. Then, we

can obtain the safe parameter with t 
ik 

≥ θ t 
ik 

√ 

2 t ln (1 /εt 
ik 
) . The quantity t 

ik 
/ 
√ 

t plays the same role as the quantity 
t 
ik 

. 

The optimal object value of the robust approximation problem should be as close to the real value of the chance con-

straint problem as possible. This means that the employed perturbation set should be as small as possible while ensuring

that every feasible solution is feasible for the chance constraint. However, a smaller perturbation set may bring more com-

plex, and even computationally intractable problems. Thus, a suitable set should take into account computational complexity

and conservatism. In the next section, we will provide a case study to verify the performance of different perturbation sets.

5. Case study 

The pre-positioning emergency supply problem can effectively reduce the negative effects of natural disasters. In this

section, we focus on the pre-positioning emergency supply problem prepared for earthquake in Circum-Bohai Sea Region of

China. The solution procedure is solved using CPLEX 12.7.1 optimization software, and all the experiments are performed on

an INTEL Core 4 CPU with a 3.4 gigahertz processor and 24 gigabytes of RAM. 

5.1. Problem description 

The Circum-Bohai Sea Region has an important strategic position in China, as it includes the political, economic and

cultural center of the country. The region is located near the North China seismic belt, which includes 157 cities with a

population of approximately 260 million people and with a size of approximately 1120 thousand square kilometers. Accord-

ing to the national earthquake emergency response plan of China, the corresponding emergency response plan should be

activated for earthquakes with magnitudes greater than 4.0. Fig. 1 presents the Circum-Bohai Sea Region’s seismic map from
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Fig. 2. Pre-positioning network of the Circum-Bohai Sea Region. 

Table 1 

Sizes, fixed costs, and storage capacity of facilities. 

Size F l ( CNY ) γ l ( m 

3 ) 

Small 11 , 205 , 0 0 0 10 , 458 

Medium 18 , 649 , 800 20 , 084 

Large 49 , 470 , 0 0 0 61 , 110 

 

 

 

 

 

 

 

 

 

the United States Geological Survey (USGS), and the dots depict all earthquakes with greater than 4.0 magnitude since 1968.

This region has suffered from frequent disasters and is one of the main earthquake monitoring areas for the China National

Commission for Disaster Reduction. 

Thirty candidate cities are selected with convenient transportation in the region to host the facilities. The pre-positioning

network is presented in Fig. 2 . Based on the construction standard for a relief supplies reserve base 121 − 2009 , we choose

three different types of facilities, i.e., large, medium and small facilities. The capacity of the facility equals the effective area

of the facility multiplied by its height (4.2m). Usually, the larger the facility is, the lower the construction cost per square

meter. Based on the project cost analysis, the estimated construction costs of the three types of facilities are 340 0, 390 0

and 4500 CNY per square meter, respectively. The relevant parameters of the facilities are shown in Table 1 . The facilities

should be located adjacent to rail terminals or highway entrances so that after an earthquake, the emergency commodities

can quickly meet the needs of the affected people. 
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Table 2 

Sizes, fixed costs, and storage capacity of facilities. 

Arcs Arc capacity ( ton ) Arcs Arc capacity ( ton ) Arcs Arc capacity ( ton ) 

1 − 2 170 10 − 11 460 18 − 19 410 

1 − 3 390 10 − 12 350 19 − 20 30 

1 − 5 90 10 − 14 960 20 − 21 390 

1 − 6 710 11 − 13 970 20 − 22 80 

2 − 6 50 12 − 13 250 21 − 22 100 

2 − 7 250 12 − 14 20 22 − 23 480 

3 − 4 360 12 − 15 150 22 − 26 990 

4 − 7 110 13 − 14 320 23 − 28 120 

5 − 6 40 13 − 15 630 24 − 25 30 

5 − 9 10 14 − 16 1310 25 − 26 10 

6 − 8 470 15 − 17 540 26 − 27 920 

6 − 9 10 15 − 24 20 27 − 28 650 

8 − 11 790 16 − 17 290 27 − 29 270 

9 − 10 70 16 − 18 880 27 − 30 140 

9 − 11 20 17 − 22 1130 29 − 30 240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several assumptions are made as follows. First, the candidate cities are chosen by considering convenient railway trans-

portation. 2 Railway transportation has the advantages of high transportation capacity, low price and high speed. The bearing

capacity of an arc in one day, as shown in Table 2 , is determined by the number of railway lines between cities. In this pa-

per, the emergency commodities are supplied from pre-positioning facilities opened in these candidate cities to the affected

areas via the railway. Second, due to the high anti-seismic capabilities, we assume that the facilities and the roads linking

them will not be disrupted if the earthquake does not exceed 7.0 Ms. Third, we consider five basic emergency commodities:

food, water, medical kit, shelter and clothing. Last, the response time of the pre-positioning network after an earthquake is

set to within 30 days. We assume that demands are only generated in the first 20 days of the planning horizon. In practice,

however, due to the road capacity constraint, the emergency commodities will be delayed to transported to the affected

area. Thus, we set up an extra 10 days to replenish the first 20 days of unsatisfied demands. The commodities require one

day to be transported to a city. 

The demand for relief supplies is related to the number of affected people, which is driven by the magnitude of the

earthquake. First, we need to approximately estimate the probability of an earthquake. We use historical data from the

USGS on the numbers of earthquakes greater than 4.0 during the last 50 years, i.e., H = { τ | 1968 ≤ τ ≤ 2018 } . Second, we

take the urban area of the candidate point as the center and 50 km as the radius to obtain the magnitude and number of

earthquakes. Because of the small number of earthquakes, it is difficult and impractical to exactly estimate the probability

distribution based on historical data. Thus, we take the mean of the earthquake magnitude as the nominal value to estimate

the disaster frequency, and the magnitude of the earthquake is a nearly symmetric distribution. 

According to [49] , the disaster frequency per year and the expected average earthquake magnitude can be roughly esti-

mated as 

f r i = 

m i 

50 

, i ∈ N, 

M a ∗i = 

∑ 

τ∈ H M a τ
i 

m i 

, i ∈ N, 

where m i is the number of earthquakes at node i , and Ma τ
i 

is the magnitude of an earthquake occurring at node i time τ . 

Since probabilistic seismic hazard assessment is time-independent, by incorporating the probability changes caused by

large mainshocks [50] , the probability that the number m i of earthquakes with magnitude Ma i greater than Ma 0 at the

chosen point within T time units is given according to a Poisson distribution. 

Pr i (M a i ≥ M a 0 ) = 

(ϕ(Ma i ) · T ) m i 

m i ! 
· e (−ϕ(Ma i ) ·T ) , i ∈ N, 

where ϕ( Ma i ) is the mean frequency of disasters with magnitudes greater than Ma 0 in one time unit. In addition, the mean

frequency of earthquakes ϕ( Ma i ) is an empirical recurrence function given by 

ϕ(Ma i ) = f r i · e 
− Ma i 

Ma ∗
i , i ∈ N. 
2 We omit sea shipping and road transportation in this case. First, in this region, sea shipping has only one potential point link, i.e., Weihai (node 30) 

and Dalian (node 7). Further, sea shipping is full of uncertain risk, especially in bad weather. In general, earthquakes may bring tidal waves that hit coastal 

areas. For the port cities in our problem (Weihai and Dalian), sea shipping is not safe. Second, although road transportation has advantages in terms of 

the flexibility of both the location and the time of delivery, it is appropriate for short distances and “last mile” transportation assignments, which are 

microscopic scale decisions. In the Circum-Bohai Sea Region case, the decision makers are focused on the macroscopic scale decisions, for which rail is 

more suitable. 



14 4 4 M. Yang, Y. Liu and G. Yang / Applied Mathematical Modelling 89 (2021) 1433–1458 

Table 3 

Number and average magnitude of historical earthquakes . 

Node 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Number ( m i ) 1 28 1 0 0 6 1 3 0 2 64 1 5 0 1 

Average magnitude (Ma ∗
i 
) 4.8 4.8 4.5 0 0 4.7 4.6 4.4 0 4.3 4.8 4.6 5 0 5 

Node 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Number ( m i ) 15 0 2 0 0 6 0 1 0 2 0 0 0 2 1 

Average magnitude (Ma ∗
i 
) 4.3 0 4.9 0 0 4.7 0 1 0 4.4 0 0 0 4.1 4.0 

Table 4 

Nominal demands at 30 candidate cities (Unit, 0-19 days). 

Commodity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Water 42 325 7 0 0 37 34 42 0 192 2177 23 417 0 40 

Food kit 28 217 4 0 0 25 22 28 0 128 1451 15 278 0 27 

Medical kit 284 2170 47 0 0 250 226 284 0 1285 14514 153 2780 0 272 

Shelter 177 1356 29 0 0 156 141 177 0 803 9071 96 1737 0 170 

Clothing 142 1085 23 0 0 125 113 142 0 642 7257 76 1390 0 136 

Commodity 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

Water 47 0 83 0 0 258 0 0 0 19 0 0 0 59 11 

Food kit 31 0 55 0 0 172 0 0 0 13 0 0 0 39 7 

Medical kit 319 0 553 0 0 1726 0 0 0 130 0 0 0 392 75 

Shelter 199 0 346 0 0 1079 0 0 0 81 0 0 0 245 647 

Clothing 159 0 276 0 0 863 0 0 0 65 0 0 0 196 637 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, we calculate the probability ω i that more than one earthquake will occur within one year at node i by 

ω i = 1 − e −ϕ(Ma i ) , i ∈ N. 

In this paper, we consider earthquakes greater than magnitude 6.0 that can cause serious losses. The relevant historical

earthquake data with Ma ≥ 4 in recent 50 years are shown in Table 3 . 

The minimum standards of emergency commodities for humanitarian response are derived from [51] and Construction

Standard 121 − 2009 . More specifically, using the compressed biscuits as emergency food, each person receives two pieces

per day to meet 2100 kcal energy requirements. Food is served in the food kit and 10 0 0 pieces is considered to be a unit

kit. Water is assumed to be in units of 10 0 0 liters, and a person needs three liters of water daily. A single medical kit is

designed to serve 50 persons per day. Food, water and medical kits as periodical emergency commodities should meet the

daily needs at each candidate city for the entire emergency period. A 12 square meter shelter dedicated to disaster relief

can accommodate 4 persons. Each person should be provided 2 sets of emergency clothing. Considering non-periodical

emergency commodities, shelter and clothing should be transported to each candidate city in the initial time periods [52] .

We calculate the total demand for non-periodical emergency commodities to be determined within 20 days and to be

distributed the same amount each day for simplicity. Nevertheless, our results can be easily extended to distribute the

commodities in any proportion. 

Demand at each candidate city is estimated on the basis of the population multiplied by the proportion of assistance

needed and the daily demand for emergency commodities. The assistance proportion is determined by the number of people

affected by the earthquake. Generally speaking, earthquakes greater than magnitude 6.0 can cause MSK intensity VIII, which

can cause more than 30% of buildings to collapse [53] . 

Based on the above description, the demand for each candidate city can be approximately calculated by the following

formulation: 

d t ik = d t k · n i · ω i · 30% , (25) 

where n i denotes the population of candidate city i , and d t 
k 

represents the daily demand of emergency commodity k . 

Table 4 shows the demands at 30 candidate cities in detail. In Table 4 , the demands in the first 20 days are the deter-

ministic value, i.e., the nominal value. 3 The deterministic model assumes deterministic demands equal to the values shown

in Table 4 . However, in the real world, demand can fluctuate unexpectedly because it has many sources, including the es-

timated error in affected people, damaged emergency commodity and mutual help between different areas. The upper and

lower bounds for the earthquake magnitude is approximately 10% of the nominal value. Thus, the positive constant pertur-

bation 

ˆ d t 
ik 

is estimated to be 10% of the nominal demand. 
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Table 5 

Unit acquisition price, volume, weight and transportation costs for commodities. 

Commodity a k ( CNY / unit ) v k ( m 

3 / unit ) b k ( ton / unit ) c k ( CNY / unit · km ) 

Water 1000 1 1 0.28 

Food kit 6000 0.059 0.25 0.017 

Medical kit 800 0.05 0.015 0.014 

Shelter 1200 0.312 0.052 0.087 

Clothing 380 0.158 0.014 0.044 

Table 6 

Results of deterministic and two robust counterpart’ models under one-fold penalty factor. 

Model Objective Facility size Commodity ( Unit ) 8 

( CNY ) Large Medium Small W F M S C 

Deterministic 1 , 533 , 147 , 507 11,13 2,8,10,15 1,18,21,25,29 76 , 260 50 , 800 509 , 200 318 , 200 254 , 540 

Box − pol yhedral 1 , 635 , 588 , 889 10,11,13 2,21 1,8,18,25,29 81 , 463 54 , 260 543 , 889 339 , 877 271 , 894 

Box − bal l 1 , 635 , 229 , 311 10,11,13 2,21 1,8,18,25,29 81 , 448 54 , 256 543 , 845 339 , 849 271 , 858 

∗ W = Water,F = Food kits,M = Medical kits,S = Shelter,C = Clothing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5 lists the parameters for the acquisition cost a , the volume v , the weight b and the transportation cost c per

unit distance. More specifically, the acquisition cost is a rough estimation of the current market price; the volume and

weight depend on the actual specifications of the commodities; and the transportation cost is estimated according to the

China railway freight network 95306. In addition, the holding cost h is assumed to be 10% of the acquisition cost per year

[8] . This cost means that if the commodities are not all used by the end of the disaster, a management cost is incurred

and a salvage value exists, e.g., if the holding cost equals 0; this represents the supply-demand balance of commodities.

Because transportation delay is a major impediment to commodity distribution, the unmet demand one-fold penalty factor

is estimated to be 1 to 8 times the purchase price, which increases cubically along the time horizon. The holding and

penalty costs are useful for illustration purposes but values may not match between different locations or different levels of

emergency. 

In Section 4 , we introduce 3 perturbation sets to describe uncertain demands. To control the size of the generated in-

tervals of uncertainty, we define the adjustable parameters of the box perturbation set θ t ′ 
ik 

= 1 , i.e., the perturbation vari-

able ζ t ′ 
ik 

varies in [ −1 , 1] . The box robust counterpart is feasible for the randomly perturbed inequality with probability 1.

However, the perturbation set is not necessarily defined to guarantee 100% protection against perturbations. For ease of

calculation, we set the risk degree εt 
ik 

to be the same value for all t ∈ T , i ∈ N , k ∈ K . Therefore, for box-ball and box-

polyhedral perturbation sets, we assume that the robust optimal solution satisfies the uncertainty-affected constraint with

probability of at least 1 − εt 
ik 

= 0 . 99 . According to Theorems 1 and 2 , the adjustable parameter 
t 
ik 

= 

√ 

2 ln (1 /εt 
ik 
) = 3 . 035

and t 
ik 

= 

√ 

2 ln (1 /εt 
ik 
) 
√ 

20 = 13 . 572 , which guarantee the same probability of constraint violation. 

5.2. Results analysis 

In this section, to validate the distributionally robust optimization approach and determine the value of considering un-

certainty, we evaluate computational results and analyze the performance of the proposed distributionally robust emergency

supplies pre-positioning model. We will make a comparative discussion from the following three aspects: distributionally

robust counterpart’s solutions VS. deterministic solutions, distributionally robust counterpart’s solutions VS. robust counter-

part’s solutions and multi-period model’s solutions VS. single-period model’s solutions. 

5.2.1. Distributionally robust VS. deterministic 

In this case, we compare solutions between the distributionally robust model and its deterministic counterpart to eval-

uate their performance in addressing demand uncertainty. Table 6 shows the results from the deterministic model and the

two distributionally robust counterpart (RC) models under one-fold penalty factor, including the “box-polyhedral” based

model and the “box-ball” based model. In this tabulation, the entries in the column Objective show the optimal cost. The

entries in the column Facility size represent the number of facilities of different sizes, and Commodity represents the total

pre-positioning quantity of different types of commodities. 

In Tables 6 , 7 pre-positioning facilities are opened in the network of the deterministic model, with 2 large ones, 3

medium ones and 2 small ones. Similarly, 9 pre-positioning facilities are opened in the network of box-polyhedral and

box-ball RC models, with 3 large ones, 2 medium ones and 4 small ones. The numbers and locations of the pre-positioning
3 In the nominal model, the perturbation value of demand in constraint (3) is zero, that is to say, demand is a deterministic value, not a random variable. 

In this paper, the nominal model is the same as the deterministic model. 
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(a) Deterministic (b) Box-ball and Box-polyhedral

Fig. 3. Facility pre-positioning locations from the deterministic, box-polyhedral RC and box-ball RC models. 

Table 7 

List of deterministic and two robust counterpart’ costs under one-fold penalty factor. 

Cost list Deterministic ( CNY ) Box − pol yhedral (CNY ) Box − bal l (CNY ) 

Fixed cost 229 , 564 , 200 24 , 1734 , 600 24 , 1734 , 600 

Acquisition cost 1 , 266 , 985 , 200 1 , 353 , 307 , 826 1 , 353 , 186 , 160 

Transportation cost 5 , 671 , 286 5 , 055 , 850 5 , 048 , 059 

Inventory cost 28 , 283 , 681 31 , 840 , 351 31 , 610 , 228 

Penalty cost 2 , 643 , 140 3 , 650 , 262 3 , 650 , 264 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

facilities in the three models are shown in Fig. 3 . The objective function value of the deterministic model is approximately

1533.15 million CNY, including 229.56 million CNY in fixed costs, 1266.99 million CNY in acquisition costs, 5.67 million CNY

in transportation costs, 28.28 million CNY in inventory costs, and 2.64 million CNY in penalty costs for unmet demand. The

objective function values of the box-polyhedral and box-ball RC models are increased to 1635.59 million CNY and 1635.23

million CNY, respectively. Changes in the specific costs for the box-polyhedral and box-ball RC models under one-fold penalty

factor are listed in Table 7 . 

From the comparison of the above results, we find that the robust feasible solution follows the “worst-case-oriented”

criterion. Therefore, it is reasonable for the distributionally robust counterpart model to have higher costs when faced with

uncertain demand. The two distributionally robust counterpart models have very similar solutions. The difference is that

the solutions of the box-ball RC are slightly better than those of the box-polyhedral RC. However, the box-polyhedral RC

can be represented by a system of linear constraints, which can be easily addressed by commercial solvers. In contrast, the

box-ball RC is an example of conic quadratic programming, which may lead to a hard or even intractable computation. We

find that the box-polyhedral RC solution yields high-quality solutions with quite short CPU times. Next, we will take the

box-polyhedral RC model as an example to illustrate the performance of the distributionally robust optimization approach. 

Due to the unpredictability of uncertain demand, the deterministic model is likely to obtain infeasible solutions. In re-

sponse to the perturbation of demand, the distributionally robust model obtains a relatively conservative solution. How-

ever, the distributionally robust model can generate solutions that satisfy all constraints for any perturbations of uncertain

demand. 

In reality, the demand of the deterministic model cannot be absolutely reliable. The purpose of following experiment is

to observe that what will we suffer when sticking to the nominal solution when the actual demand is against it. Therefore,

we assume that the demands of commodities are realizations of random variables varied around the nominal demands.

We assume that the demands of commodities are realizations of random variables varied around the nominal demands.

According to the fluctuation of historical earthquake magnitude, we assume fluctuation value drifts in a 10% margin of the

nominal demand. Moreover, we assume that the demands of the deterministic model take the nominal value and extreme

value in the respective segments with probabilities 0.5 each. 

Based on the results in Table 6 , we analyze the expected values of the deterministic and box-polyhedral RC models under

constraint violation. In the pre-positioning problem, a disaster will incur different risk degrees εt 
ik 

with respect to different
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Fig. 4. Expected cost with different penalty factors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cities, times and commodities. The stability of commodity supply plays a significant role in disaster prevention. To prevent

underestimating risk, we take the maximum risk degree ε to calculate the expected costs of the deterministic model and

the box-polyhedral RC model, as shown below, 

E[ cost] = f cs ∗ (1 − ε) + f cv ∗ ε, (26)

where ε = max 
t∈ T,i ∈ N,k ∈ K 

εt 
ik 

, f cs represents the optimal value of the deterministic model or the box-polyhedral RC model, and f cv

represents the value of the deterministic model or the box-polyhedral RC model when there is a constraint violation. That

is to say, f cv represents the penalty value when sticking to the optimal solution when the demand is against it. For the aim

of simplicity, we assume that εt 
ik 

are the same for all t ∈ T , i ∈ N , k ∈ K . 

Based on the calculation of Eq. (26) , the expected cost of the nominal model is 3284.79 million CNY. With the requires

risk level ε = 1% , the expected cost of box-polyhedral RC is 1652.45 million CNY. In Table 6 , we can see that although

the total cost yielded by the box-polyhedral RC model is 6.68% more than that provided by the deterministic model, the

expected cost of the box-polyhedral RC model is less than the 98.78% reduction in the actual expected cost. These results

show that a small perturbation of demand may heavily affect the quality of the solution. The price of robustness may

effectively be a reduction in the infeasibility of the optimal solution. 

Fig. 4 shows the expected costs of the deterministic and box-polyhedral RC models with different penalty factors. When

increasing the penalty factor, the expected costs of the box-polyhedral RC model see only minor changes, whereas the

expected costs of the deterministic model show an increasing trend. When the penalty factor is small, large changes in

decision making will not have a significant impact on the objective, and robustness may not be cost-effective. However,

when the penalty factor is large, small fluctuations in decision making will have a large impact on the objective. For the

deterministic model, the expected cost of the fivefold penalty factor is 213.35% more than that of the onefold penalty factor,

whereas for the box-polyhedral RC model, the expected cost of the fivefold penalty factor is just 3.04% more than that

of the onefold penalty factor. These results indicate that the distributionally robust optimization model can adapt to more

urgent problems. Thus, when the penalty costs are subject to prediction or measurement errors, the distributionally robust

model can minimize the total cost on the basis of ensuring a certain rate of demand satisfaction. Under the background of

emergency supplies, it is better to set the penalty factor to a relatively high value. In the next section, we will compare the

performance of the distributionally robust and robust models. 

5.2.2. Distributionally robust vs. robust 

In this section, we compare the solutions of the distributionally robust and robust models to evaluate their performance

when dealing with demand uncertainty. The robust model uses (18) to replace the chance constraint (11) . The robust model

is the “worst-case-oriented” model, i.e., the box RC model. Typically, the perturbations of uncertain parameters are of a

stochastic nature. Based on historical data, we usually have only partial distribution information for random perturbations.

The solutions of the robust model (box RC) usually make the constraint valid with probability 1, which means it is too
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Table 8 

Statistics of box and box-polyhedral robust counterpart models under one-fold penalty factor. 

Facility size Cost list(CNY) Commodity(Unit) 

Box Large 10,11,13 Fixedcost 249179400 Water 83 , 886 

Medium 2,8,21 Acquisitioncost 1393683720 Foodkits 55 , 880 

Small 1,18,25,29 Transportationcost 5007993 Medicalkits 560 , 120 

Inventorycost 30365095 Shelter 350 , 020 

Penaltycost 3650262 Clothing 279 , 994 

Box − pol yhedral Large 10,11,13 Fixedcost 241734600 Water 81 , 463 

Medium 2,21 Acquisitioncost 1353307826 Foodkits 54 , 260 

Small 1,8,18 Transportationcost 5055850 Medicalkits 543 , 889 

25,29 Inventorycost 31840351 Shelter 339 , 877 

Penaltycost 3650262 Clothing 271 , 894 

(a) Box (b) Box-polyhedral

Fig. 5. Facility pre-positioning locations of box and box-polyhedral RC models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

conservative. Next, we will analyze the distributed robust model and see that it can not only reduce the price of robustness

but also keep the results stable with an increase of uncertainty level. 

Table 8 presents the statistics for the box and box-polyhedral RC models under one-fold penalty factor, and the numbers

and locations of the pre-positioning facilities are shown in Fig. 5 . The box RC guarantees 100% immunization against per-

turbations, meaning that the expected cost is equal to the objective function value. Then, the expected cost from the box

RC model is 1688.46 million CNY, which is 9.7% more than the deterministic cost. This solution is robust for any possible

realization of uncertainty, and there is no constraint violation. However, the decision maker may prefer the less conservative

model. 

To reduce the degree of conservativeness, the decision maker can allow for a certain degree of constraint violation that

may lead to a more optimal solution. As mentioned above, the box-polyhedral RC can employ a degree of constraint violation

as low as 1%. In general, what size of constraint violation is necessary to ensure that the solution is the most optimal? To

illustrate the answer to this question, we use the probability of constraint violation ε varied from 0 to 0.1 in intervals of

0.005. The expected cost from the box-polyhedral RC model can be calculated by Eq. (26) . The distribution of results is

depicted in Fig. 6 . 

Fig. 6 shows the trade-off relationship between expected cost and constraint violation probability. For the box RC model,

the expected cost remains constant as the confidence level increases. This means that the box RC provides the most conser-

vative solution and that every feasible solution to the box RC is feasible here. For the box-polyhedral RC, we can see that

the expected cost is not always a monotonically increasing or decreasing function with respect to the risk. The expected

cost of the box-polyhedral RC model is lower than that of the box RC model with confidence level ε = 0 . 05 . The expected

cost of the box-polyhedral RC reaches the minimum cost of 1635.59 million CNY at the approximate risk ε = 0 . 009 . Note

that when ε = 0 , the box and box-polyhedral RCs have the same solution. 

Based on the above experiments, we test the performance of the box-polyhedral RC and box RC models under different

risks. Two perturbation sets are available for constructing robust counterpart models. The solutions of the models have
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Fig. 6. Expected cost with constraint violation probability. 

Table 9 

Statistics of static and dynamic models under deterministic environment. 

Facility size Cost list(CNY) Commodity(Unit) 

Static Large 6,10,11,13 Fixedcost 209085000 Water 76260 

Medium Acquisitioncost 1284865200 Foodkits 50800 

Small 30 Transportationcost 10521679 Medicalkits 507850 

Inventorycost 0 Shelter 330200 

Penaltycost 0 Clothing 266540 

Dynamic Large 11,13 Fixedcost 229564200 Water 76260 

Medium 2,8,10,15 Acquisitioncost 1266985200 Foodkits 50800 

Small 1,18,21,25,29 Transportationcost 5671286 Medicalkits 509200 

Inventorycost 28283681 Shelter 318200 

Penaltycost 2643140 Clothing 254540 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

strong robustness compared to a deterministic solution. This robustness brings a certain price so that the robust solution can

be conservative when it deals with the worst case scenario, which corresponds to maximum demand (nominal demand &

perturbation demand). However, with a quite small risk, the box-polyhedral RC can effectively reduce the price of robustness.

5.2.3. Static vs. dynamic 

In this section, we contrast the experimental results for the network in terms of the static and the dynamic commodity

allocation models after a disaster. The static model (refer to Appendix B ) simulates the standard approach, which assumes a

single-period model. In other words, the static model does not take into account when and how the goods are transported to

the affected area but only meets the balance between supply and demand. The dynamic model is the same as the nominal

model with a one-fold penalty factor. 

We will make a comparison between the static and dynamic models with the following assumptions. First, we assume

that the two models are in a deterministic environment. Second, we assign the arc capacity of the static model to be infinite.

Third, we set the penalty factor of the static model to be 5 times the purchase price of the commodities. Finally, we assume

the same amount of demand at the candidate cities as in the dynamic model, i.e., the demand of each candidate city in

the static model is equal to the accumulated demand for the period under the dynamic situation. The contrasting solutions

given by the static and dynamic resource allocation formulations are summarized in Table 9 . 

We solve the total cost and penalty cost values of static and dynamic models using CPLEX commercial solver. The optimal

objective values of the corresponding models are 1504.47 million CNY and 1533.15 million CNY, respectively. The static

model and the dynamic model have similar optimal objective values. However, as shown in Table 9 , the locations and sizes

of facilities, as well as the various costs, are significantly different. The static model satisfies the balance of supply and

demand, so the inventory and penalty costs of the static model are zero. Note that a static transportation network has been

used to estimate the current and future allocation of emergency commodities. A static model can provide a better estimate
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(a) Static (b) Dynamic

Fig. 7. Facility pre-positioning locations of static and dynamic models. 
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for the purpose of supply and demand balance. It represents the distribution of results without a time factor. However, the

dynamic model requires that demand be met every day, or it will incur a penalty cost. 

In reality, demand information can change over time based on changing conditions, which may have a significant impact

on the response plan. The dynamic process is required about when and how many emergency commodities need to be

transported. We apply the static model’s solution to the dynamic model to calculate the results. Therefore, when the results

of the static model suffer in a realistic environment, the response plans may become sub-optimal or even infeasible. With

this policy, the violation value of the static model is 2361.64 million CNY, which increases losses by 57%. The pre-positioning

locations of facilities in the static and dynamic models are shown in Fig. 7 . 

To test the sensitivity of the solution to the unmet demand penalty, we solve for the total cost and penalty cost with

the static and dynamic models with different penalty factors (as shown in Fig. 8 ). The static model is very sensitive to

changes in the penalty factor. When the penalty factor is small, there is a huge penalty. When the penalty factor is large,

the penalty cost rapidly declines to zero. This is because the balance of supply and demand eliminates the penalty. However,
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Table 10 

Statistics of dynamic model with arc capacity constraint. 

Facility size Cost list(CNY) Commodity(Unit) 

Large 11,13 Fixedcost 218359200 Water 76260 

Medium 2,8,10,15 Acquisitioncost 1266985200 Foodkits 50800 

Small 1,18,21,29 Transportationcost 5858821 Medicalkits 509200 

Inventorycost 27649791 Shelter 318200 

Penaltycost 3680977 Clothing 254540 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

this phenomenon is usually impractical in the real world. Although there are sufficient commodities, it is difficult to meet

demand at every time point. For the dynamic model, the total cost and penalty cost are kept within a certain range. When

the penalty factor is small, the cubic penalty function can also satisfy a certain amount of commodity demand. 

It is also interesting to compare the models with and without arc capacity constraints. In this section, we obtain the

solutions of a dynamic model with an arc capacity constraint (DWACCM). In addition, the solutions of a dynamic model

without an arc capacity constraint (DOACCM) are summarized in Table 10 . Compared with the entries of columns Cost list

and Commodity , the two models have very similar costs and commodity quantities. However, there are some differences

between the locations of the pre-positioning facilities in the two models. The solution of DWACCM uses the same large and

medium locations as in the solution of DOACCM but adds a small facility at nodes 25 (DWACCM). Therefore, the solution

constructed without the arc capacity constraint will not meet the situation give by the actual arc capacity constraint. In this

case, a delay in the distribution of commodities will prevent the timely meeting of demand and increase the penalty cost

from 3680977 CNY to 7016287 CNY. These changes are important to ensure that penalty costs are not caused by a lack of

resources or by a delay in delivery. 

6. Managerial implications 

In this section, we will discuss and summarize some of the interesting managerial insights generated from our model

formulation and case study analytical results. 

(I) We formulate the pre-positioning of emergency supplies problem from the perspective of government organizations.

Those investing in facilities and commodities wish to significantly reduce the loss of people’s lives and property.

The proposed model enables managers to make better decisions based on risk and cost factors. More specifically, this

paper discusses the efficient planning of pre-positioning activities to provide the necessary disaster relief commodities

to people in the affected areas immediately. The study of multi-period dynamic decisions can also provide a better

overview of relief commodity needs and help managers to evaluate how these needs will be assigned over time. 

(II) In our Circum-Bohai Sea Region case study, we first compare the distributionally robust model with the deterministic

model. The experimental results show that the distributionally robust model obtains a relatively conservative solu-

tion. However, the solution is feasible for the randomly perturbed inequality with probability ε. In addition, under

different penalty factors, the expected costs of the distributionally robust model have only minor changes, whereas

the expected costs of the deterministic model show an upward trend. The distributionally robust model can adapt

to a more urgent problem. Under the background of emergency supplies, managers are better off setting the penalty

factor to a relatively high value. 

(III) We also compare the distributionally robust model with the robust model. The solutions of the robust model (the

box RC) usually make the constraint valid with probability 1, but this is too conservative. The expected cost of the

box-polyhedral RC model is lower than that of the box RC model with risk degree ε = 0 . 05 . The expected cost of

box-polyhedral RC reaches the minimum cost with the approximate risk ε = 0 . 009 . With a quite small risk, the box-

polyhedral RC can effectively reduce the price of robustness. If the loss caused by the risk is serious, the managers

should apply distributionally robust model to effectively reduce losses. 

(IV) Finally, we contrast the experimental results for the network in terms of both the static and the dynamic commodity

allocation model after a disaster, where the static commodity allocation model is a single-period model. A static

model can provide a better estimate for the purpose of supply and demand balance. In practice, the implementation

of the static model necessarily follows a dynamic process. By comparing the dynamic solution with the static solution

substituted into the dynamic model, the violation value of the static model increases to 57% of losses. For a situation

wherein demand changes over time, managers should pay more attention to multi-period dynamic decisions. 

7. Conclusions 

In this paper, a distributionally robust optimization model is proposed for the multi-period dynamic pre-positioning

of emergency supplies problem with demand uncertainty. Our model is composed of two phases: the pre-disaster phase

determines the inventory size and the location of facilities to open and the required inventory quantities of emergency

commodities to purchase, and the dynamic post-disaster phase determines the routes and amount of transportation from
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the facilities to the affected areas. The aim of the proposed model is to minimize the total cost, including fixed, acquisi-

tion, transportation, holding and unmet demand penalties. In our model, time-variant demand is subject to uncertainty. A

distributionally robust optimization approach is used to tackle the ambiguous chance constraints with box, box-ball and

box-polyhedral perturbation sets. We obtain the computationally tractable robust counterparts (RCs) through the theorem 

of duality. 

To illustrate the effectiveness of the distributionally robust optimization model, a realistic world application in the

Circum-Bohai Sea Region of China is presented as an example. We first select 30 candidate cities according to the size

of cities and the convenience of transportation in the Circum-Bohai Sea Region of China and connect them based on the

actual railway distribution. Using the historical data from the USGS on the numbers of earthquakes greater than 4.0 dur-

ing the last 50 years, we roughly estimate the probability that an earthquake will occur in each candidate city to obtain

the nominal commodity demand. The resulting analysis demonstrates the robustness and conservatism of the proposed RC

model. The distributionally robust optimization model outperforms the deterministic and robust optimization models for 

the same problem. In addition, the box RC is the most conservative model. The box-ball and box-polyhedral RC models can

obtain a less conservative solution with a quite small risk. Analysis of this case study demonstrates the superiority of the

multi-period dynamic pre-positioning of emergency supplies model, as the managers can dynamically assign the commodi-

ties based on the practical analysis of the post-disaster situation and changes in the confidence level. 

Although there are an increasing number of studies in the field of disaster relief, there are still many limitations in

this paper that need to be developed in future research. First, due to the large region, this study restricts transportation

to railways only. Further research will be aimed at the case of the coexistence of railway and road transportation. Second,

we assume that the rail network and depots would work after a major disaster. This assumption is reasonable because

critical infrastructure should resist 7.0 Ms quakes. With an earthquake of magnitude 7 or more, railways and roads will be

damaged, and helicopter rescue will be an important research topic. In this paper, we just focus on the transportation of

railway without being damaged. Third, for simplicity, we restrict that the commodities require one day to be transported to

a city. The relief time in distant cities usually tend to be slower than those in surrounding cities. In order to depict the time

effective, the commodity transportation in non-adjacent cities will take more time. This assumption is also a limitation, and

there may be other ways to depict this time effective, which will be an interesting research direction. 
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Appendix A. Proofs 

A.1. Proof of Proposition 1 

Proof. For the ball perturbation set induced robust counterpart (17) , the set can be denoted using conic representation 

U 2 = { ζ | P 2 ζ + p 2 ∈ K 2 } , 
where 

• P 2 ζ = [�−1 ζ ; 0] , � = diag{ 1 , . . . , 1 } , p 2 = [0 L ×1 ;
] and K 2 = { (z; t) ∈ R L × R : ‖ z‖ 2 ≤ t} , whence K 

∗
2 = { (z; t) ∈ R L × R :

‖ z‖ 2 ≤ t} �

Then the inner maximization problem in the constraint (14) can be denoted as 

max ζ

{ 

t−1 ∑ 

t ′ =0 

ζ t z t 
′ 

: P 2 ζ + p 2 ∈ K 2 

} 

. (27) 

Setting the dual variable y = [ η; τ ] with one-dimensional τ and L-dimensional η and using the dual cone K 

∗
2 
, the conic dual

of (27) can be formulated as 

min η,τ { 
τ : ‖ η‖ 2 ≤ τ } . (28) 

Then we can replace τ with ‖ η‖ 2 = 

√ ∑ t−1 
t ′ =0 

(ηt ′ ) 2 , and obtain 


√ ∑ t−1 
t ′ =0 

(ηt ′ ) 2 . 
Incorporating the above conic dual into the robust counterpart constraint, the following constraint is obtained 

ϕ 

t 
ik 

+ 
t 
ik 

√ ∑ t−1 
t ′ =0 (ψ 

t ′ 
ik 
) 2 ≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K. (29) 

Based on the ball perturbation set, we induced the safe approximation of chance constraint (14) 

Pr 

{ 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

(1) = Pr 

{ 

ϕ 

t 
ik + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

(ψ 

t ′ 
ik 
) 2 + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

(ψ 

t ′ 
ik 
) 2 

} 
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(2) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

(ψ 

t ′ 
ik 
) 2 

} 

= Pr 

⎨ 

⎩ 

∑ t−1 
t ′ =0 ζ

t ′ 
ik 
ψ 

t ′ 
ik √ ∑ t−1 

t ′ =0 (ψ 

t ′ 
ik 
) 2 

> 
t 
ik 

⎬ 

⎭ 

(3) = Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik > 
t 

ik 

} 

(4) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik ≥ 
t 

ik 

} 

(5) = Pr 

{ 

δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik ≥ δt 

ik 

t 
ik 

} 

(6) ≤ E 

{ 

exp { δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik } 

} 

� exp { δt 
ik 


t 
ik } (7) = 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 
{

exp { δt 
ik ζ

t ′ 
ik α

t ′ 
ik } 

}
� exp { δt 

ik 

t 
ik } 

(8) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 

{ 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) n 

n ! 

} 

= exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ 1 

−1 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) n 

n ! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(9) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ 1 

−1 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) 2 n 

(2 n )! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(10) ≤ exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
αt ′ 

ik 
) 2 n 

(2 n )! 

} 

(11) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
αt ′ 

ik 
) 2 n 

2 

n n ! 

} 

= exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
exp { (δt 

ik α
t ′ 
ik ) 

2 / 2 } = exp {−δt 
ik 


t 
ik } exp { (δt 

ik ) 
2 

∑ 

t ′ ∈{ 0 , ... t−1 } 
(αt ′ 

ik ) 
2 / 2 } 

= exp { (δt 
ik ) 

2 / 2 − δt 
ik 


t 
ik } 

Note that in the above derivation, the equality (1) is obtained by adding 
t 
ik 

√ ∑ t−1 
t ′ =0 

(ψ 

t ′ 
ik 

) 2 on both sides of the constraint;

the inequality (2) is based on the inequality (29) ; in equality (3), αt ′ 
ik 

= 

ζ t ′ 
ik 

ψ 

t ′ 
ik √ ∑ t−1 

t ′ =0 
(ψ 

t ′ 
ik 

) 2 
; the equality (4) uses direct relaxation

of the strict inequality; the equality (5) uses δt 
ik 

> 0 ; the equality (6) uses the Markov inequality; the equality (7) uses

the independence condition; the equality (8) uses the Maclaurin series; the equality (9) uses the symmetric distribution

condition; the equality (10) uses the [ −1 , 1] bound condition; the equality (11) uses the fact (2 n )! > 2 n n !. Finally, to obtain

the best upper bound, let δt 
ik 

= 
t 
ik 

, the proof is complete. �

A.2. Proof of Theorem 1 

Proof. Consider the box-ball perturbation set (19) , then the set can be denoted using conic representation 

U ∞∩ 2 = { ζ | P ∞ 

ζ + p ∞ 

∈ K ∞ 

, P 2 ζ + p 2 ∈ K 2 } , 
where 

• P ∞ 

ζ = [ ζ ; 0] , p ∞ 

= [0 L ×1 ; θ ] and K ∞ 

= { (z; t) ∈ R L × R : ‖ z‖ ∞ 

≤ t} , whence K 

∗
1 

= { (z; t) ∈ R L × R : ‖ z‖ 1 ≤ t} 
• P 2 ζ = [�−1 ζ ; 0] , � = diag{ 1 , . . . , 1 } , p 2 = [0 L ×1 ;
] and K 2 = { (z; t) ∈ R L × R : ‖ z‖ 2 ≤ t} , whence K 

∗
2 

= { (z; t) ∈ R L × R :

‖ z‖ 2 ≤ t} 
Then the inner maximization problem in the constraint (14) can be denoted as 

max ζ

{ 

t−1 ∑ 

t ′ =0 

ζ t z t 
′ 

: P ∞ 

ζ + p ∞ 

∈ K ∞ 

, P 2 ζ + p 2 ∈ K 2 

} 

. (30)

Setting the dual variable y 1 = [ η1 ; τ1 ] , y 2 = [ η2 ; τ2 ] with one-dimensional τ 1 , τ 2 and L-dimensional η1 , η2 and using the

dual cone K 

∗
1 
, K 

∗
2 
, the conic dual of (30) can be formulated as 

min η1 ,η2 ,τ1 ,τ2 
{ θτ1 + 
τ2 : η1 + η2 = z, ‖ η1 ‖ 1 ≤ τ1 , ‖ η2 ‖ 2 ≤ τ2 } . (31)

Then we can replace τ 1 and τ 2 with ‖ η1 ‖ 1 = 

∑ t−1 
t ′ =0 

| ηt ′ 
1 
| and ‖ η2 ‖ 2 = 

√ ∑ t−1 
t ′ =0 

(ηt ′ 
2 
) 2 , respectively, and obtain the variant of

(31) as follows 

min η1 ,η2 

{ 

θ
t−1 ∑ 

t ′ =0 

| ηt ′ 
1 | + 


√ 

t−1 ∑ 

t ′ =0 

(ηt ′ 
2 ) 

2 : ηt ′ 
1 + ηt ′ 

2 = z t 
′ 

} 

= θ
t−1 ∑ 

t ′ =0 

| z t ′ − ηt ′ 
2 | + 


√ 

t−1 ∑ 

t ′ =0 

(ηt ′ 
2 ) 

2 . 

(32)
�
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In addition, the above formulation can be transformed by introducing auxiliary variable u t 
′ 

and constraint −u t 
′ ≤ z t 

′ −
ηt ′ 

2 
≤ u t 

′ 
as follows ⎧ ⎪ ⎨ 

⎪ ⎩ 

θ
t−1 ∑ 

t ′ =0 

u 

t ′ + 


√ 

t−1 ∑ 

t ′ =0 

(ηt ′ 
2 ) 

2 

−u 

t ′ ≤ z t 
′ − ηt ′ 

2 ≤ u 

t ′ . 

(33) 

Incorporating the conic dual (33) into the robust counterpart constraint, the following constraints are obtained ⎧ ⎪ ⎨ 

⎪ ⎩ 

ϕ 

t 
ik 

+ 

[ 

t−1 ∑ 

t ′ =0 

θ t ′ 
ik u 

t ′ 
ik + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik ) 

2 

] 

≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

−u 

t ′ 
ik 

≤ ψ 

t ′ 
ik 

− η1 
t ′ 
ik 

≤ u 

t ′ 
ik 
, ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, 

�

A.3. Proof of Theorem 2 

Proof. Consider the box+polyhedral perturbation set (21) , then the set can be denoted using conic representation 

U ∞∩ 1 = { ζ | P ∞ 

ζ + p ∞ 

∈ K ∞ 

, P 1 ζ + p 1 ∈ K 1 } , 
where 

• P ∞ 

ζ = [ ζ ; 0] , p ∞ 

= [0 L ×1 ; θ ] and K ∞ 

= { (z; t) ∈ R L × R : ‖ z‖ ∞ 

≤ t} , whence K 

∗
1 

= { (z; t) ∈ R L × R : ‖ z‖ 1 ≤ t} 
• P 1 ζ = [ ζ ; 0] , p 1 = [0 L ×1 ;] and K 1 = { (z; t) ∈ R L × R : ‖ z‖ 2 ≤ t} , whence K 

∗∞ 

= { (z; t) ∈ R L × R : ‖ z‖ ∞ 

≤ t} 
Then the inner maximization problem in the constraint (16) can be denoted as 

max ζ

{ 

t−1 ∑ 

t ′ =0 

ζ t z t 
′ 

: P ∞ 

ζ + p ∞ 

∈ K ∞ 

, P 1 ζ + p 1 ∈ K 1 

} 

(34) 

Setting the dual variable y 1 = [ η1 ; τ1 ] , y 2 = [ η2 ; τ2 ] with one-dimensional τ 1 , τ 2 and L-dimensional η1 , η2 and using the

dual cone K 

∗
1 
, K 

∗∞ 

, the conic dual of (34) can be formulated as 

min η1 ,η2 ,τ1 ,τ2 
{ θτ1 + τ2 : η1 + η2 = z, ‖ η1 ‖ 1 ≤ τ1 , ‖ η2 ‖ ∞ 

≤ τ2 } (35) 

Then we can replace τ 1 and τ 2 with ‖ η1 ‖ 1 = 

∑ t−1 
t ′ =0 

| ηt ′ 
1 
| and ‖ η2 ‖ ∞ 

= max t ′ ∈{ 0 , ... ,t−1 } | ηt ′ 
2 
| , respectively, and obtain the vari-

ant of (35) as follows 

min η1 ,η2 

{ 

θ
t−1 ∑ 

t ′ =0 

| ηt ′ 
1 | + max t ′ ∈{ 0 , ... ,t−1 } | ηt ′ 

2 | : ηt ′ 
1 + ηt ′ 

2 = z t 
′ 

} 

The above formulation is further equivalent to the following problem by introducing auxiliary variable u since it is a mini-

mization problem 

min η1 ,η2 

{ 

θ
t−1 ∑ 

t ′ =0 

| ηt ′ 
1 | + u : u ≥ | z t ′ − ηt ′ 

1 | , ∀ t ′ ∈ { 0 , . . . , t − 1 } 
} 

Realizing that | z t ′ − ηt ′ 
1 
| ≥ | z t ′ | − | ηt ′ 

1 
| and z t 

′ 
, ηt ′ 

1 
≥ 0 , we can get an equivalent problem as follows 

min η1 ,η2 

{ 

θ
t−1 ∑ 

t ′ =0 

ηt ′ 
1 + u : u ≥ z t 

′ − ηt ′ 
1 , ∀ t ′ ∈ { 0 , . . . , t − 1 } , ηt ′ 

1 ≥ 0 , u ≥ 0 

} 

(36) 

Incorporating the conic dual (36) into the robust counterpart constraint, the following constraints are obtained ⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

ϕ 

t 
ik 

+ 

[ 

t−1 ∑ 

t ′ =0 

θ t ′ 
ik η1 

t ′ 
ik + t 

ik u 

t 
ik 

] 

≤ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

η1 
t ′ 
ik 

+ u 

t 
ik 

≥ ψ 

t ′ 
ik 

, ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K 

η1 
t ′ 
ik 
, u 

t 
ik 

≥ 0 , ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, 

�
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A.4. Proof of Theorem 3 

Proof. Based on the box-ball perturbation set, we induced the safe approximation of chance constraint (14) 

Pr 

{ 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

(1) = Pr 

{ 

ϕ 

t 
ik + 

[ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik (ψ 

t ′ 
ik − η1 

t ′ 
ik ) + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

] 

+ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik η1 

t ′ 
ik > 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

} 

(2) ≤ Pr 

{ 

ϕ 

t 
ik + 

[ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik | ψ 

t ′ 
ik − η1 

t ′ 
ik | + 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

] 

+ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik η1 

t ′ 
ik > 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

} 

(3) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik η1 

t ′ 
ik > 
t 

ik 

√ 

t−1 ∑ 

t ′ =0 

( η1 
t ′ 
ik 
) 2 

} 

= Pr 

⎧ ⎨ 

⎩ 

∑ t−1 
t ′ =0 ζ

t ′ 
ik 
η1 

t ′ 
ik √ ∑ t−1 

t ′ =0 ( η1 
t ′ 
ik 
) 2 

> 
t 
ik 

⎫ ⎬ 

⎭ 

(4) = Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik > 
t 

ik 

} 

(5) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik ≥ 
t 

ik 

} 

(6) = Pr 

{ 

δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik ≥ δt 

ik 

t 
ik 

} 

(7) ≤ E 

{ 

exp { δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik α

t ′ 
ik } 

} 

� exp { δt 
ik 


t 
ik } (8) = 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 
{

exp { δt 
ik ζ

t ′ 
ik α

t ′ 
ik } 

}
� exp { δt 

ik 

t 
ik } 

(9) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 

{ 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) n 

n ! 

} 

= exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ θ t ′ 
ik 

−θ t ′ 
ik 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) n 

n ! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(10) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ θ t ′ 
ik 

−θ t ′ 
ik 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
αt ′ 

ik 
) 2 n 

(2 n )! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(11) ≤ exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
θ t ′ 

ik 
αt ′ 

ik 
) 2 n 

(2 n )! 

} 

(12) = exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
θ t ′ 

ik 
αt ′ 

ik 
) 2 n 

2 

n n ! 

} 

= exp {−δt 
ik 


t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
exp { (δt 

ik θ
t ′ 
ik α

t ′ 
ik ) 

2 / 2 } = exp {−δt 
ik 


t 
ik } exp { (δt 

ik ) 
2 

∑ 

t ′ ∈{ 0 , ... t−1 } 
(θ t ′ 

ik α
t ′ 
ik ) 

2 / 2 } 

(13) = exp { (θ t 
ik δ

t 
ik ) 

2 / 2 − δt 
ik 


t 
ik } �

Note that in the above derivation, the equality (1) is obtained by adding 
t 
ik 

√ ∑ t−1 
t ′ =0 

( η1 
t ′ 
ik 
) 2 on both sides of the con-

straint; the inequality (2) uses absolute value relaxation; the inequality (3) is based on the box-ball perturbation set (19) and

formula (20) ; in equality (4), αt ′ 
ik 

= 

η1 
t ′ 
ik √ ∑ t−1 

t ′ =0 
( η1 

t ′ 
ik 

) 2 
. Then, we have 

∑ t−1 
t ′ =0 

αt ′ 
ik 

2 = 1 ; the equality (5) uses direct relaxation of

the strict inequality; the equality (6) uses δt 
ik 

> 0 ; the equality (7) uses the Markov inequality; the equality (8) uses the

independence condition; the equality (9) uses the Maclaurin series; the equality (10) uses the symmetric distribution con-

dition; the equality (11) uses the [ −θ t ′ 
ik 

, θ t ′ 
ik 

] bound condition; the equality (12) uses the fact (2 n )! > 2 n n !; in equality (13),

θ t 2 
ik 

= 

∑ t−1 
t ′ =0 

(θ t ′ 
ik 
αt ′ 

ik 
) 2 . Finally, to obtain the best upper bound, let δt 

ik 
= 


t 
ik 

(θ t 
ik 

) 2 
, the proof is complete. �

A.5. Proof of Theorem 4 

Proof. Based on the box-polyhedral perturbation set, we induced the safe approximation of chance constraint (14) 

Pr 

{ 

ϕ 

t 
ik + 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 0 

} 

= Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > −ϕ 

t 
ik 

} 

(1) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik ψ 

t ′ 
ik > 

[ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik η1 

t ′ 
ik + t 

ik u 

t 
ik 

] } 
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(2) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik (ψ 

t ′ 
ik − η1 

t ′ 
ik ) > 

[
t 

ik max 
t ′ ∈{ 0 , ... t−1 } 

(ψ 

t ′ 
ik − η1 

t ′ 
ik ) 

]} 

= Pr 

{ ∑ t−1 
t ′ =0 ζ

t ′ 
ik 
(ψ 

t ′ 
ik 

− η1 
t ′ 
ik 
) 

max t ′ ∈{ 0 , ... t−1 } (ψ 

t ′ 
ik 

− η1 
t ′ 
ik 
) 

> t 
ik 

}

(3) = Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik β

t ′ 
ik > t 

ik 

} 

(4) ≤ Pr 

{ 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik β

t ′ 
ik ≥ t 

ik 

} 

(5) = Pr 

{ 

δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik β

t ′ 
ik ≥ δt 

ik 
t 
ik 

} 

(6) ≤ E 

{ 

exp { δt 
ik 

t−1 ∑ 

t ′ =0 

ζ t ′ 
ik β

t ′ 
ik } 

} 

� exp { δt 
ik 

t 
ik } (7) = 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 
{

exp { δt 
ik ζ

t ′ 
ik β

t ′ 
ik } 

}
� exp { δt 

ik 
t 
ik } 

(8) = exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
E 

{ 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
βt ′ 

ik 
) n 

n ! 

} 

= exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ 1 

−1 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
βt ′ 

ik 
) n 

n ! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(9) = exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ ∫ 1 

−1 

∞ ∑ 

n =0 

(δt 
ik 
ζ t ′ 

ik 
βt ′ 

ik 
) 2 n 

(2 n )! 
f (ζ t ′ 

ik ) dζ t ′ 
ik 

} 

(10) ≤ exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
θ t ′ 

ik 
βt ′ 

ik 
) 2 n 

(2 n )! 

} 

(11) = exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 

{ 

∞ ∑ 

n =0 

(δt 
ik 
θ t ′ 

ik 
βt ′ 

ik 
) 2 n 

2 

n n ! 

} 

= exp {−δt 
ik 

t 
ik } 

∏ 

t ′ ∈{ 0 , ... t−1 } 
exp { (δt 

ik θ
t ′ 
ik β

t ′ 
ik ) 

2 / 2 } = exp {−δt 
ik 

t 
ik } exp { (δt 

ik ) 
2 

∑ 

t ′ ∈{ 0 , ... t−1 } 
(θ t ′ 

ik β
t ′ 
ik ) 

2 / 2 } 

(12) ≤ exp { t(θ t 
ik δ

t 
ik ) 

2 / 2 − δt 
ik 

t 
ik } �

Note that in the above derivation, the equality (1) is obtained based on the box-polyhedral perturbation set (21) and

the first constraint of the formulas (22) ; the inequality (2) is obtained based on the second constraint of the formulas (22) ;

in equality (3), βt ′ 
ik 

= 

ψ 

t ′ 
ik 

−η1 
t ′ 
ik 

max 
t ′ ∈{ 0 , ... t−1 } (ψ 

t ′ 
ik 

−η1 
t ′ 
ik 

) 
. Then, we have βt ′ 

ik 
≤ 1 , ∀ t ′ ∈ { 0 , . . . t − 1 } ; the equality (4) uses direct relaxation

of the strict inequality; the equality (5) uses δt 
ik 

> 0 ; the equality (6) uses the Markov inequality; the equality (7) uses

the independence condition; the equality (8) uses the Maclaurin series; the equality (9) uses the symmetric distribution

condition; the equality (10) uses the [ −θ t ′ 
ik 

, θ t ′ 
ik 

] bound condition; the equality (11) uses the fact (2 n )! > 2 n n !; in equality

(12), tθ t 
ik 

= 

∑ t−1 
t ′ =0 

θ t ′ 
ik 
βt ′ 

ik 
, where t is the dimension of βt ′ 

ik 
. Finally, to obtain the best upper bound, let δt 

ik 
= 

t 
ik 

t(θ t 
ik 

) 2 
, the proof

is complete. 

Appendix B. Deterministic model, box-polyhedral RC model and static model 

B.1 Deterministic model 

min y,q,x,z,w 

∑ 

i ∈ N 

∑ 

l∈ L 
F il y il + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
a k q 

t 
ik + 

∑ 

t∈ T 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k r i j x 

t 
i jk + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
(h k z 

t 
ik + M 

t 
k w 

t 
ik ) 

s . t . w 

t 
ik 

− z t 
ik 

= 

t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk −

∑ 

( j,i ) ∈ A 
x t 

′ 
jik + d̄ t 

′ 
ik − q t 

′ 
ik 

) 

, ∀ t ∈ T , i ∈ N, k ∈ K, 

∑ 

t∈ T 

∑ 

k ∈ K 
v k q t ik ≤

∑ 

l∈ L 
γl y il , ∀ i ∈ N, 

∑ 

k ∈ K 
b k x t i jk ≤ B i j , ∀ t ∈ T , (i, j) ∈ A, 

∑ 

l∈ L 
y il ≤ 1 , ∀ i ∈ N, 

∑ 

(i, j) ∈ A 
x t i jk ≤ z t ik − w 

t 
ik , ∀ t ∈ T , i ∈ N, k ∈ K, 

y il ∈ (0 , 1) , ∀ i ∈ N, l ∈ L, 

q t 
ik 
, w 

t 
ik 

≥ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

x t 
i jk 

≥ 0 , ∀ t ∈ T , (i, j) ∈ A, k ∈ K. 
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B.2 Box-polyhedral RC model 

min y,q,x,z,w 

∑ 

i ∈ N 

∑ 

l∈ L 
F il y il + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
a k q 

t 
ik + 

∑ 

t∈ T 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k r i j x 

t 
i jk + 

∑ 

t∈ T 

∑ 

i ∈ N 

∑ 

k ∈ K 
(h k z 

t 
ik + M 

t 
k w 

t 
ik ) 

s . t . 

t−1 ∑ 

t ′ =0 

( ∑ 

(i, j) ∈ A 
x t 

′ 
i jk −

∑ 

( j,i ) ∈ A 
x t 

′ 
jik + d̄ t 

′ 
ik − q t 

′ 
ik 

)
+ 

t−1 ∑ 

t ′ =0 

θ t ′ 
ik η1 

t ′ 
ik + t 

ik u 

t 
ik ≤ w 

t 
ik − z t ik , ∀ t ∈ T , i ∈ N, k ∈ K, 

η1 
t ′ 
ik 

+ u 

t 
ik 

≥ ˆ d t 
′ 

ik 
, ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K, ∑ 

t∈ T 

∑ 

k ∈ K 
v k q t ik ≤

∑ 

l∈ L 
γl y il , ∀ i ∈ N, 

∑ 

k ∈ K 
b k x t i jk ≤ B i j , ∀ t ∈ T , (i, j) ∈ A, 

∑ 

l∈ L 
y il ≤ 1 , ∀ i ∈ N, 

∑ 

(i, j) ∈ A 
x t i jk ≤ z t ik − w 

t 
ik , ∀ t ∈ T , i ∈ N, k ∈ K, 

y il ∈ (0 , 1) , ∀ i ∈ N, l ∈ L, 

q t 
ik 
, w 

t 
ik 

≥ 0 , ∀ t ∈ T , i ∈ N, k ∈ K, 

x t 
i jk 

≥ 0 , ∀ t ∈ T , (i, j) ∈ A, k ∈ K, 

η1 
t ′ 
ik 
, u 

t 
ik 

≥ 0 , ∀ t ∈ T , t ′ ∈ { 0 , . . . , t − 1 } , i ∈ N, k ∈ K. 

B.3 Static model 

When the period T is not considered, the static model can be formulated as 

min y,q,x,z,w 

∑ 

i ∈ N 

∑ 

l∈ L 
F il y il + 

∑ 

i ∈ N 

∑ 

k ∈ K 
a k q ik + 

∑ 

(i, j) ∈ A 

∑ 

k ∈ K 
c k r i j x i jk + 

∑ 

i ∈ N 

∑ 

k ∈ K 
(h k z ik + M k w ik ) 

s . t . 
∑ 

( j,i ) ∈ A 
x jik + q ik − z ik = 

∑ 

(i, j) ∈ A 
x i jk + d ik − w ik , ∀ i ∈ N, k ∈ K, 

∑ 

k ∈ K 
v k q ik ≤

∑ 

l∈ L 
γl y il , ∀ i ∈ N, 

∑ 

k ∈ K 
b k x i jk ≤ B i j , ∀ (i, j) ∈ A, 

∑ 

l∈ L 
y il ≤ 1 , ∀ i ∈ N, 

y il ∈ (0 , 1) , ∀ i ∈ N, l ∈ L, 

q ik , w ik ≥ 0 , ∀ i ∈ N, k ∈ K, 

x i jk ≥ 0 , ∀ (i, j) ∈ A, k ∈ K. 
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