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cept of multiplicative consistency for g-rung orthopair fuzzy preference relations. Then, a
multiplicative consistency index is offered, by which we derive the concept of acceptable

Ié?:l ngggzs multiplicative consistency for g-rung orthopair fuzzy preference relations. Following this
GDM concept, optimization models for ascertaining unknown values in an incomplete g-rung
Incomplete g-ROFPR orthopair fuzzy preference relation are built. Furthermore, optimization models for obtain-
Multiplicative consistency ing acceptable multiplicative g-rung orthopair fuzzy preference relation are proposed.
Priority weight vector Then, an optimization model for group decision making is proposed to attain an enough

consensus. Afterward, a group decision making method with incomplete and unacceptable
multiplicative consistent g-rung orthopair fuzzy preference relations is proposed. Finally,
we use an application example to show the practicality of the proposed group decision
making method. The proposed group decision making method outperforms the existing
group decision making methods for group decision making in incomplete g-rung orthopair
fuzzy environments.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Group decision making (GDM) is an attractive and useful process to deal with complex decision situations
[10,11,13,17,19,22-24,29,39,41,42,44,46], where several experts get together to make a group decision. In various GDM
methods, preference relations are efficient and relatively simple tools, whose goal is to obtain the ranking order of alterna-
tives based on pairwise judgments between alternatives. Fuzzy preference relations (FPRs) [20] and multiplicative prefer-
ence relations (MPRs) [26] are two kinds of basic and useful preference relations. Extensions of these two kinds of
preference relations have been proposed, including intuitionistic FPRs [36], intuitionistic MPRs [33], interval FPRs [35], inter-
val MPRs [27], hesitant FPRs [50] and hesitant MPRs [49], .. ., etc. Recently, Yager [37] presented the notion of g-rung ortho-
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pair fuzzy sets (q-ROFSs), whose membership degree r(u) and non-membership degree vg(u) satisfy the restriction
0 < ph(u) + vi(u) < 1, where g > 1. Clearly, if g = 1, then q-ROFSs are a generalized form of intuitionistic fuzzy sets [5]; if
q = 2, then q-ROFSs are a generalized form of Pythagorean fuzzy sets [38]. Thus, q-ROFSs are more general and more flexible
than intuitionistic fuzzy sets and Pythagorean fuzzy sets. Up to now, q-ROFSs have been widely applied to deal with decision
making problems. Many aggregation operators in the environment of q-ROFSs have been developed [6,7,9,12,14,15,16,21].
Moreover, Zhang et al. [47] presented the notion of g-rung orthopair fuzzy preference relations (q-ROFPRs) based on q-ROFSs
and preference relations. For the concept of additive consistency for q-ROFPRs, it was originally proposed in [47]. Based on
the concept of additive consistency of q-ROFPRs, Zhang et al. [47] established a linear programming model to obtain the q-
rung orthopair fuzzy (q-ROF) priority weight vector from a q-ROFPR or a set of q-ROFPRs. For an unacceptable consistent q-
ROFPR, some goal programming models are built in [45] for improving its consistency level. For the concept of multiplicative
consistency of q-ROFPRs, it was originally proposed in [48]. Following the definition of the consistency of q-ROFPRs, Zhang
et al. [48] presented a programming model to derive the normalized q-ROF priority weights from a q-ROFPR. Furthermore,
Zhang et al. [48] established a goal programming method to determine the priority weights of alternatives from a set of -
ROFPRs. Moreover, Zhang et al. [48] offered an algorithm to repair the inconsistency of a g-ROFPR and proposed a GDM
method with q-ROFPRs.
However, there are some drawbacks in the existing GDM methods [47,48], described as follows:

(1) As the GDM environment becomes more and more complicated, there are too many uncertain factors to make it
impossible to obtain the complete evaluation information. Hence, it is needed to deal with incomplete information
in GDM processes. However, the existing GDM methods [47,48] do not deal with incomplete g-ROFPRs, where an
incomplete q-ROFPR contains unknown q-ROFNs.

(2) To make a reasonable GDM, a group of decision makers (DMs) are usually involved in practice. Thus, how to reach an
agreement among DMs whose perceptions are represented by q-ROFPRs is very important. To meet this challenge, the
consensus among the opinions of DMs is an important topic for GDM with q-ROFPRs, where a consensus procedure is
worth to be considered during GDM processes. However, the GDM methods presented in Zhang et al. [47] and [48] do
not consider this aspect.

(3) Based on the definition of g-ROFPR, Zhang et al. [47] discussed its additive consistency, which relates to the validity
and the dependability of the priority weights of alternatives. However, the consistency test and the adjustment of q-
ROFPRs are not considered in the method presented in Zhang et al. [47].

(4) In GDM problems, ignoring the influence of DMs’ weights will lead to unreasonable ranking orders of alternatives.
Thus, we must consider the influence of DMs’ weights in GDM processes. In Zhang et al.’s GDM method [47], the
weights of DMs are predefined, which are subjective and artificial.

(5) In order to guarantee the consistency of q-ROFPRs is reached, Zhang et al.’s GDM method [48] presented an adjust-
ment procedure to let an original q-ROFPR becomes a consistent g-ROFPR. With the consistency improving algorithm
presented in Zhang et al. [48], it needs to derive the consistent q-ROFPR of an original g-ROFPR at each iteration, which
makes GDM processes more complicated. Furthermore, Zhang et al.’'s GDM method [48] needed to adjust most of the
original judgements in q-ROFPRs, which means that most of the original evaluation information in q-ROFPRs may be
lost.

In order to effectively overcome the above drawbacks, we deal with incomplete g-ROFPRs from the perspective of con-
sistency and the consensus to propose a new GDM method. The main contributions of this paper are highlighted as follows:

(1) Different from the definition of additive consistency presented in Zhang and Chen [45] for q-ROFPRs, we propose a
multiplicative consistency concept. Following the proposed consistency concept of q-ROFPR, we propose a consistency
index for a q-ROFPR. Then, the definition of an acceptable consistent q-ROFPR is defined. A model for estimating
unknown values in an incomplete q-ROFPR is proposed through minimizing the consistency index. Meanwhile, a
repairing model is offered to adjust an unsatisfactorily consistent g-ROFPR to obtain an acceptable multiplicative con-
sistent q-ROFPR. Subsequently, we propose a new individual decision making method called “Algorithm 1” with an
incomplete q-ROFPR.

(2) Based on the definition of correlation coefficient, we propose an approach to determine the weights of DMs in GDM
processes. Furthermore, it is proven that if each individual q-ROFPR is acceptable consistent, then the collective q-
ROFPR is acceptable consistent.

(3) Through introducing a group consensus index for a set of DMs, we introduce a way to improve their consensus when
DMs are unsatisfied with their current consensus degree. Then, we propose a GDM method called “Algorithm 2” based
on incomplete q-ROFPRs.

(4) We utilize the proposed GDM method to deal with an application example of selecting the best paper and provide
some comparative analyses to exhibit the merits of the proposed GDM method.

The rest of this paper is organized as follows. Section 2 presents the preliminaries of this paper. Section 3 makes the
acceptable multiplicative consistency analysis and proposes a new individual decision making method with an incomplete
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g-ROFPR. Section 4 presents a method to determine DMs’ weights and proposes a new GDM method, called Algorithm 2,
based on the multiplicative consistency-and-consensus preference analysis of incomplete g-ROFPRs. Section 5 offers an
example of selecting the best paper. Section 6 presents the conclusions.

2. Preliminaries

As the basis of this paper, we review several related concepts. Yager [37] presented the concept of g-rung orthopair fuzzy
sets (q-ROFSs). A q-ROFS R is represented by R = {(u, t,(u), vg(u))|u € U}, where U is an ordinary fixed set, the membership
function u,: U — [0,1] and the non-membership function vg: U — [0,1] define the membership degree and the non-
membership degree of element u € U belonging to the q-ROFS R, respectively, where for each u € U, 0 < pi(u) + vi(u) < 1
and q > 1.

A g-rung orthopair fuzzy number (q-ROFN) [14] is represented by o = (u,, V), where p,, v, € [0,1], 0 < u + v§ < 1 and
q=1

Definition 2.1 [14]. Let o = (u,,v,) be a q-ROFN. The score value S(x) of the q-ROFN o = (u,,v,) is defined by
S(a) = pg — v, where q > 1; the accuracy value H() of the q-ROFN o = (u,, V) is defined by H(x) = u + v, where S
and H are the score function and the accuracy function of g-ROFNs, respectively, and q > 1.

Let oy = (,ual , vx,) and o, = (,uwvaz) be two g-ROFNs. According to [14], we can see that

(1) If S(ot1) > S(o2), then oy > oz
(2) If S(otq) = S(0r2), then

If H(oy) > H(otp), then o > oy
If H(oy) = H(orp), then oy = ot;.

Definition 2.2 [47]. Let X = {x1,X2,-- -, X, } be a set of alternatives and let the g-ROFN o;; = (uij, vij) denote the degree that

alternative x; prefers to alternative x;, where i=1,2,---,n,j=1,2,---,n and q > 1. The matrix A = (o)
n x n q-ROFNs is called a g-ROFPR, which satisfies:

consisting of

nxn

,uij7 vl] € [07 ‘”*
Wy = Vii,
Vij = Hy;, (1)
M = Vi = V0.5,

0<pf+vi<t,
wherei=1,2,---,n,j=1,2,---,nand q > 1.
Zhang et al. [48] introduced the following multiplicative consistency concept of g-ROFPRs.
Definition 2.3 [48]. Let A = («;),, , be a g-ROFPR, where o = (,uU, vi,-) isag-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1.

The g-ROFPR A = (o), is multiplicative consistent if the following is true:

i M M = Mg g i (2)

forallij,k=1,2,--- n.

3. Acceptable multiplicative consistency of g-ROFPRs

In this section, we deal with incomplete and unacceptable multiplicatively consistent g-ROFPRs. First, a new multiplica-
tive consistency definition for g-ROFPRs is presented. Then, a multiplicative consistency index for g-ROFPRs is offered. Sub-
sequently, a multiplicative consistency-based optimization model for obtaining unknown values of incomplete g-ROFPRs is
proposed. Afterward, when g-ROFPRs are unacceptable multiplicatively consistent, a procedure for reaching the acceptable
multiplicative consistency requirement is proposed. Moreover, a programming model to get the g-POF priority vector is
built. Finally, a decision making method including a q-ROFPR is presented.

3.1. Multiplicative consistency of q-ROFPRs

Based on Definition 2.2 and Definition 2.3, we can deduce the following property of g-ROFNs.
Theorem 3.1. Let A = (o), be a g-ROFPR, where oy = (,u,-j,v,-j> isa q-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1. The
following statements are equivalent:

nxn
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(1) My et = ik for all i j k= 1,2, m;

(2) viVikvii = Vievig Vi, for all i,j, k=1,2,---,n;

(3) Myt = ViV Vi, for all i,j,k = 1,2, n;

(4) Myl = Mathly for all i,j,k=1,2,--- nwith i <j <k;
(5) ViVikVii = VikVijVji, for all i,j,k=1,2,--- ,nwithi <j < k;
(6) Mylbythy = ViVixVii, for all i,j,k =1,2,--- nwith i <j <k;
(7) MyllyVie = VigViely for all i,j,k =1,2,--- nwith i <j <k.

Based on Definition 2.3 and Theorem 3.1, we propose the definition of multiplicative consistency of g-ROFNs.
Definition 3.1. Let A = (o), . be a -ROFPR, where o;; = <,u,-j, v,-j> isaq-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1. The
q-ROFPR A = (o), .is multiplicative consistent if and only if

it Vi = VigViie Mg )

foralli,jk=1,2,--- ,nwithi<j<k.
To measure the consistency of g-ROFPRs, it is urgent to provide a reliable consistency index and the corresponding
threshold value.

Definition 3.2. Let A = (o), . be a -ROFPR, where o; = (u,.j, v,,-) isag-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1. The
multiplicative consistency index MCI(A) of the g-ROFPR A = (o), ,» where o; = (,uij, v,-j) is a g-ROFN, is defined as follows:
n-2 n-1 n

Z Z Z ‘]n<ﬂg) +1n<,ujk> +1In(vie) — In(vy) — In(vie) — ]n(uik)’ 4)

i=1 j=i+1 k=j+1

MCI(A) =

where MCI(A) > 0.

Because the g-ROFPRs given by DMs are usually unacceptable consistent, we must judge and improve their consistency
levels. In the following, we use the proposed acceptable consistency index shown in Definition 3.2 to discuss how to judge
and derive acceptable consistent g-ROFPRs. The concept of acceptable multiplicative consistent g-ROFPRs is presented as
follows.

Definition 3.3. Given a consistency threshold value 6, where é € [0, 1], a g-ROFPR A is acceptable multiplicative consistent
if MCI(A) < 4, where 6 € [0,1].

3.2. Obtaining unknown values in incomplete q-ROFPRs

In some cases, we can only obtain incomplete g-ROFPRs, where some judgments in g-ROFPRs are missing. In order to deal
with this situation, this subsection discusses incomplete g-ROFPRs and builds optimization models for estimating unknown

g-ROFNs in incomplete g-ROFPRs. Let A = (o), . be an incomplete g-ROFPR, where o;; = (,uU, vij> isag-ROFN,i=1,2,---,n,

j=1,2,---,nand q > 1, namely, there are some unknown values in the incomplete g-ROFPR A = (&), .. Then, an auxiliary

g-ROFPR A’ = (ocgj) obtained from the incomplete g-ROFPR A = («;),, , with oy = (,uu ) can be built, shown as follows:
nxn

0= My, if p; isknown,
u Py, if ; is unknown,

e (3)
. { v, if v;; is known,
¥\ gy, if vy is unknown.
where 0 < p;, 05 < 1, pu +0'U <l,g=>1,i=1,2,---,n,andj=1,2,---,n
Based on Eq. (5), we use the following model to estimate those missing judgments in the incomplete g-ROFPR A:
F =min ¢
n-2 n-1 n
/ / / _ < n(n-1)(n-2)¢
,:21 j:iz+1 ’(ZJZH 1n<,uu) + ln(ujk> +In(v},) ln( > ln( ) In(ptg, )| < M=k,
s.t. Ogﬂbgl,l]:1,2,7nl<], (M_1)
O< v;']' < 17 ivj:1>2~,"'an7 i<j,~
q q .. .
<,u;]> + (V;]> < 17 L,]= 1,2,"',”, 1<)
After removing the symbol “||” of the absolute value, the model (M-1) is transformed into:
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F =min ¢
n-2 n-1

n .
poip» (c;k+c,;k) < Metin-2e,
i=1 j k=j+

In(44;) +In(st) + In(vi) ~In(v;) - m(

s.t. g,-jk,é,-jk =>0,ij,k=1,2,---,n i<j<k

0< <1, 4,j=1,2,---,n, i<},
1,ij=1,2,---,n, i <j,

Ogv;j
(u;j)q+(v;j)q<1, ij=1,2,---.n i<].

After solving the model (M-2) for the upper triangular part of the unknown g-ROFNs in the incomplete g-ROFPR A, the
unknown g-ROFNs in the upper triangular parts of the incomplete g-ROFPR A can be derived. To obtain the numerical results
of the model (M-2), the software package MATLAB is used in this paper. Based on Definition 2.2, we further derive those
unknown g-ROFNs in the lower triangular part of the incomplete g-ROFPR A. Afterwards, the optimal objective value F*

and a complete g-ROFPR A’ = < ,-j) are obtained. If F* < 6, where ¢ is a predefined consistency threshold value and
xn

§ € [0, 1], then the complete g-ROFPR A’ is acceptable multiplicative consistent. Otherwise, this complete g-ROFPR A’ is unac-
ceptable consistent.

—In(u) - Ge+Cp=0,1j,k=12,---,n, i<j<k,
(M-2)

NN

3.3. Models of deriving an acceptable multiplicative consistent q-ROFPR

Let A = (%), , be a ¢-ROFPR, where o;; = (,u,.ﬁ v,-j) isag-ROFN,i=1,2,---,n,j=1,2,---,nand g > 1. Let § be the prede-
fined consistency threshold value, where 6 € [0, 1]. According to Definition 3.3, it can be seen that if MCI(A) < 6, then A is
acceptable consistent. However, if we cannot ensure the acceptable multiplicative consistency of A, then the inequality
“MCI(A) < §” may be not true. Generally speaking, g-ROFPRs are usually unacceptable multiplicative consistent following
Definition 3.1. Therefore, we need to increase the consistency levels of g-ROFPRs. Besides, the adjustments should try to
retain the original judgements of g-ROFPRs. Considering these two aspects, we propose the following optimization model:

f=min Z Z (‘ln(,uu) - ln(,a,-j>’ + ‘ln(vi]-) - ln(%j)’)

i=1 j=i+l1
;1; 21 kzn; 1n<,u,j) +ln(,u]k +ln( u<) ln(v,,) —ln(ﬁjk) —ln(ﬂik) .
o s

My vy €0,1), ij =12, n, i <],
4+ vy <1, ij=1,2-n i<}
where A is an unacceptable multiplicative consistent g-ROFPR, A= (&,;) is the corresponding adjusted acceptable multi-
nxn

plicative consistent g-ROFPR, &,-j = (,Zt,-j,;,-j> isa g-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1.

The originality of the model (M-3) is that it not only derives an acceptable multiplicative consistent g-ROFPR from an
unacceptable multiplicative consistent g-ROFPR, but also keeps the preference information in the original g-ROFPR as much
as possible.

After removing the symbol “| |” of the absolute value in the model (M-3), the following model is derived:
n
f=min¥ 5 (¢5+¢§+<p.—;+<ﬁ§)
i=1 j=i+1

In(vy) —1n($,-,» ;- =0,ij=1,2,n i<],

2ol n(n-1)(n-2)
Z Z Z < ijk + ‘//yk) = 6 ’
=i+1 k=j+1

i=1j =j
s.t. ln(/],-j> + ln@jk) +1n(§,~k) - ln(ﬁ,j ln<v > ln(,u,k) ¥ — Y =0, Ljk=1,2,---n i<j<k,
Vi €0,1], ij=1,2,---,n, i <],

(M-4)

,u,j+vu< ,i,j=1,2,---,n, i<},
d)ijv(p;]v(poij7(pij = 07 17121727'“7’17 i<j7
Vi e = 0, 1,j,k=1,2,---n, i<j<k
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The first constraint to the fourth constraint in the model (M-4) guarantee that the adjusted g-ROFPR A meets the require-
ment of acceptable consistency; the fifth constraint to the eighth constraint in the model (M-4) guarantee that the adjusted

q—ROFPR;\ is still a g-ROFPR. To obtain the numerical results of the model (M-4), the software package MATLAB is used in this
paper.

3.4. The consistency-derived priority weight vector

Definition 3.4. For a g-ROF priority weight vector w = (w1, w3, -, a),,)T, where w; = (uw', vwi> is a q-ROFN,
Moy Vo, € [0,1], ue, +vd, <1,i=1,2,---,nand q > 1, wis called a normalized q-rung orthopair fuzzy priority weight vector
if S50 jattdy, < Vb and pd, +n—2 > >0, vi, foralli=1,2,---,nand q > 1.

Based on the normalized q-ROF priority vector w = (wq, s, -+, ®,)", where ; = (,uwi, Vu),) is a g-ROFN, Moy Ve, € 0,1],

ub, +ve, <1,i=1,2,---,nand q > 1, a multiplicative consistent q-ROFPR B = (f;), . can be established, where §; is a g-
ROFN, shown as follows:

) i (\‘763,@/(_)—5) if i=j, °
ﬁij - <'ulfu"vﬁ"f> o (#wiv“)jyvf/)iu(/)]‘) ) if iy, ()

foralli,j=1,2,--- ,n.
Theorem 3.2. Let w = (wq, s, --,w,)" be a normalized q-ROF priority weight vector o = (ws, @z, --,w,)", where
w; = (,uwl,vw) is a g-ROFN, u,, , Ve, €[0,1], ud, +vd, <1,i=1,2,---,nand q > 1. The matrix B = (), . is a multiplicative
(\q/o.s, \"/0.5), if i=j,
. foralli,j=1,2,---,n

(:uw,-vw;? unu(uj) ) lf l#-h
(e/o.s, \4/0.5)7 if i=j,
.. forall

<lu(u, V"ﬁ? v(ﬂl luw]) ’ lf l7é]7

i,j=1,2,--- ,n, we get p, =V0.5, vy =705, Ry = By Vo Vg = Vor Hoy» ,u%l = ,uZ,in,j and VZU = v?ui,uﬂjj. Moreover, from

consistent q-ROFPR, where f; is a q-ROFN and f; = (,u/;]_j, v,;ij) = {

nx

Proof. For the matrix B = (), .. where f; is a g-ROFN and f; = ('“/f,,"’/fu) = {

2 2
- ) (1)
the inequality a®+b® > 2ab for any two real numbers a and b, we have ,u?,l = v, < (f’ and

< >2 2
vl +</lq,,) . .
v/qfij = VZ;,#Z;,. < “‘f“’ Furthermore, because Moy Voo, € [0, 1] for any i=1,2,---,n and q > 1, we can obtain

2 2
2 2
e, Ve, v, il € [0,1]. Therefore, we have (uf,)” < pd,, (v?,,j) < Vb, (v6,)7 <V, and (,u?uj> < pd,. Then, because

ud, +vh, <1 foranyi=1,2,---,n, we have ,u‘ZUj + vﬁ,J < 1. Based on the above results, we obtain

< 2 2 2 2
i) () +(0n) +()

J 1 )
i, + Vi, = MV, + Vil < >

_ o, (ﬂ?uﬁ"&,-)Z(ﬂ?uj*VZ)j)
<=1
. . ‘ (v05,905), if i=j,
In addition, from the matrix B = (ﬁij)nxn' where g; is a g-ROFN and f; = (”/ﬁ;'f v/;u) = . we
(:uw,-vf»’);7 V“’i:uwj) ’ if 1#],
(\Q/o.s, \q/os)? if j=i, ,
have  f; = (,u/;ﬁ? Vﬁ,-,») = . .. Thus, we obtain Mg, = B Vo, = Vo My, = Vg, and
(:uw,»wavv(U,:uw,) ’ if ]7617

nx

Vi = Vo oy, = Moy Vo, = My, Therefore, based on Definition 2.2, we can see that the matrix B = ([i,»j) . is @ g-ROFPR. Further-
more, we have

:u/iij /“lﬁ,k Vg = :uwi ij :uwj Vo Vo :uwk = Vo :uwj ij :uwk :u(ui Vay, = v/fij v/fjk :u/jik'

Based on Definition 3.1, it can be seen that the matrix B is multiplicatively consistent. Q.E.D.
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Theorem 3.3. Let @ = (wy, s, -, w,)" be a normalized g-ROF priority vector, where w; = (uwi,vmi) is a g-ROFN,

s Vo, € [0,1], pdy, + v, <1, S0 iy, < Vb, pdy +n—2 >3 v, i=1,2,---.nand g > 1. Let A= (%), , be a g-
ROFPR, where o;; = (u,j,v,»j) isaqg-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1, shown as follows:
(Wos,&os), if i=j
%j = <:uij7 VU) = <,Uwi Vs Vwiluu)j) ’ if i<y, (7)
(ijﬂw,-7uwjvwi) ’ lf i >j7
Then, the q-ROFPR A given by Eq. (7) is multiplicatively consistent.
Based on Eq. (7), we get
1H<IMU> = ln(,uwi) + ln(ij>7 l,] =1,2,---,n, i <j’ (8)

ln(vij) = ln(vwi) + ln(uu)j>7 l] = 17 27 T na l <j-
Generally speaking, Eq. (8) does not hold. Therefore, Eq. (8) is relaxed through using positive deviation variables, where
1n<lu1]) - ln(luwl> - 1n<ij> - é; + é,; = 07 17] = 1727 s, i <j7

R . o )
]rl(ij) - ln(vwi) - ln(luwj) - ’7,] +7IU = 07 L] = ],2,"',“, 1<].

To maximize the consistency of the g¢-ROFPRA = (o)

nxn’

where o = (,u,.j, v,»j) isa g-ROFN, 1, , v, € [0,1], and ud, + Vi, <1,
we propose the following model to get the g-ROF priority weight vector w = (w1, @, - -, w,)", where o; = (,uwl_., v{i,i) isag-
ROFN, Ve, € [0,1], b, +vi, <1,i=1,2,..,nand q > 1, shown as follows:
n-1 n
g=miny 3 (§§+€§+n§+m})

i1 joit
ln(ui]) - 1n</xwi> —ln(ij> —&+E=01j=1,2,---,n, i<],

]n(Vij) _ln(vwi) - ln(ﬂwj) _'/I; ‘*"71; = 07 17] = 1727"'1n7 i<j7

lu(uﬂvwi € [071]7 i= 1727"'7n7

W+ Vo, <1, i=1,2,---n, (M-5)
s.t.

n
Z ,u?u] < VZ)” 1= 1727“'7n7
Jj=1j#i

n
P, +n—=2> > v, i=12,---,n,
j=1ji

+ S ont oo
51_]75117'71]111] 207

ij=1,2,---,n, i<j.

In the model (M-5), A = (o)

wen 1S @ G-ROFPR, where o; = (uij, v,j) isag-ROFN, p,,, Ve, € [0,1], Ho +vh, <1,i=1,2,---.n,
j=1,2,---nand q>1; 0= (w,w,,---,m,)" is the g-ROF priority weight vector, where w; = (uwl,v%) is a g-ROFN,
Moy Vo, € [0,1], U, +vh, <1,i=1,2, .., n and q > 1; ég, ST and ny are positive deviation variables, where
i,j=1,2,---,nand i < j. The former two constraints ensure that the obtained g-ROF priority weight vector » can maximize
the multiplicative consistency of the g-ROFPR A = (o), .. where oy = (,uij,vij) is a g-ROFN, p, vy €[0,1], and

ud, +vé, <1, and the rest of constraints ensure that the obtained priority weight vector w is a normalized q-ROF priority
weight vector. To obtain the numerical results of the model (M-5), the software package MATLAB is used in this paper.

3.5. An individual decision making method with an incomplete q-ROFPR

For individual decision making with a ¢-ROFPR A = (ay) where o = (,uij,vij) is a g-ROFN, p,, vy €[0,1],

nxn’

uh +vh, <1,i=1,2,---,n,j=1,2,---,n and q > 1, when the g-ROFPR A is acceptable multiplicative consistent, its g-
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ROF priority vector is obtained. Otherwise, A should be adjusted by the model (M-4) until it is acceptable multiplicative con-
sistent. In the following, we propose an individual decision making method with an incomplete g-ROFPR, called Algorithm 1.
Let § be a predefined consistency threshold value, where ¢ € [0, 1]. The proposed Algorithm 1 for individual decision making
with a g-ROFPR A = (a;),,,, is now presented as follows:

Algorithm 1:

Step 1: If the q-ROFPR A is complete, then go to Step 2. Otherwise, substitute the incomplete q-ROFPR A into the model
(M-2) to determine the unknown judgements in the q-ROFPR A by solving this model, which is still denoted by A.

Step 2: Based on Eq. (4), calculate the consistency index MCI(A) of the g-ROFPR A.

Step 3: According to Definition 3.3, judge whether the g-ROFPR A is acceptable consistent.

(i) If MCI(A) < 6, where 6 € [0, 1], then let the acceptable multiplicative consistent g-ROFPR A=Aand g0 to Step 4.

(ii) If MCI(A) > 5, where ¢ € [0, 1], then apply the model (M-4) to get an acceptable multiplicative consistent g-ROFPR A
corresponding to A.

Step 4: Substitute the obtained acceptable multiplicative consistent q—ROFPR;\ into the model (M-5) to obtain the g-ROF
priority weight vector w = (w1, w;, - ,wn)T, where w; = (,uwi, V«),) is a ¢-ROFN, 1, , v, € [0,1], b+ Ve, <1,i=1,2,---n
and q > 1.

Step 5: Based on Definition 2.1, compute S(w;) and H(w;) for w;, respectively, where w; = (#w,» v(,),.), S(@i) = U, — Voo,
H(wi) = d, +Ve,andi=1,2,---,n. Forany i,j=1,2,---,n and i#j, if S(w;) > S(wj), then alternative x; is better than alter-
native x;; if S(w;) =S(w;) and H(w;) > H(w;), then alternative x; is better than alternative x;; if S(w;) =S(w;) and
H(w;) = H(wy), then alternative x; and alternative x; have the same ranking order.

In the following, we show the utilization of the proposed Algorithm 1 for individual decision making.
Example 3.1. Let X = {X;,x2,X3,X4} be a set of alternatives and let A = (;), , be an incomplete g-ROFPR on X given by the

DM, where o = (,uij,vlj) isag-ROFN,i=1,2,3,4,j=1,2,3,4 and q > 1, shown as follows:

(V05.905)  (07,02) (=) (05,09
(0.2,0.7) (\/ﬁ\/ﬁ) (0.7,0.1) (—,0.5)

A=
(—,—) (0.1,0.7) (\3/0.5, 6/0.5) (0.8,0.1)
(0.9,0.5) (0.5,-) (0.1,0.8) (6/0.5, 6/0.5)
where the symbol “—" denotes an unknown value. Let the consistency threshold value 5 = 0.1 and let g = 3. We use the pro-

posed “Algorithm 1” to deal with this individual decision making problem, shown as follows:
[Step 1] Complete the missing values in the incomplete q-ROFPR A = (o), , according to the model (M-2) to get the
complete g-ROFPR A = (o), ,, Wherei=1,2,3,4,j=1,2,3,4 and q > 1, shown as follows:
(\3/0.5., \3/0.5) (0.7,0.2) (0.9092,0.5501) (0.5,0.9)
(0.2,0.7) (6/0.5, \3/0.5) (0.7,0.1) (0.9092,0.5)
(0.5501,0.9092) (0.1,0.7) (\3/0.5, \3/0.5) (0.8,0.1)

(0.9,0.5) (0.5,0.9092) (0.1,0.8) (G/ﬁ7 W)

A=

[Step 2] Based on Eq. (4), we get MCI(A) = 2.933.
[Step 3] Because MCI(A) > 6, where MCI(A) = 2.933 and the consistency threshold value § = 0.1, it can be seen that the

complete g-ROFPR A = (o), , is unacceptable consistent. Then, we derive the acceptable consistent g-ROFPR A correspond-
ing to the g-ROFPR A, shown as follows:

(3/63,3/(75) (0.6969,0.8012) (0.9092,0.5501) (0.9026,0.6019)
(0.8012,0.6969) (e/ﬁ, W) (0.6975,0.3663)  (0.9092,0.5)
(0.5501,0.9092) (0.3663,0.6975) (\/ﬁ\/ﬁ) (0.7855,0.7103)
(0.6019,0.9026)  (0.5,0.9092)  (0.7103,0.7855) (\/ﬁ 3/@)

A=
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[Step 4] The optimal g-ROF priority weight vector @ = (w, @,, w3, ®4)" is obtained from the acceptable multiplicative

consistent g-ROFPR A obtained in Step 3, where w; = (0.6654,0.8902), w, = (0.7272,0.8506), ws; = (0.4901,0.9591) and
w4 = (0.5878,0.9271).

[Step 5] Based on the score function S presented in Definition 2.1, we get the score values S(w1), S(,), S(w3) and S(m4) of
the g-ROF priority weights w;, w;, ws; and ws, respectively, where w; = (0.6654,0.8902), w, = (0.7272,0.8506),
w3 = (0.4901,0.9591), w4 = (0.5878,0.9271), S(w;) = —0.4108, S(w,) = —0.2308, S(ws3) = —0.7646 and S(w4) = —0.5938.
Because S(w;) > S(w1) > S(w4) > S(ws3), where S(w;) = —0.4108, S(w,) = —0.2308, S(ws3) = —0.7646 and S(w,4) = —0.5938,
the ranking order of the alternatives is “x; = X1 = X4 = X3".

By comparing the proposed Algorithm 1 with Zhang et al.’s method [47] for individual decision making, we can see that
the proposed Algorithm 1 has the capability for individual decision making with incomplete g-ROFPRs, whereas Zhang
et al’s method [47] does not have the capability for individual decision making with incomplete q-ROFPRs. Thus, Zhang
et al’s method [47] cannot deal with Example 3.1 shown above.

4. A new approach of GDM with incomplete g-ROFPRs

Let X = {X1,X2,---,Xn} be a set of alternatives and let D = {d;,d>,---,dn} be a set of DMs to evaluate the alternatives. Let
A = (ocfj)nxn be a g-ROFPR given by DM d; for alternative x; over alternative x;, where of = (ufj, vfj) is a g-ROFN,

i=1,2,---,n,j=1,2,---,n,s=1,2,---,mand q > 1. In the following, we propose a consensus index of g-ROFPRs and pro-
pose an approach for increasing the consensus level of g-ROFPRs.

4.1. A consensus index of q-ROFPRs

In the framework of GDM, the consensus measure and the consensus checking of g-ROFPRs should be implemented. This
section begins with the development of the consensus measure of g-ROFPRs in GDM.

Lemma 4.1 [30,34]. If z, > 0, w; > 0,s=1,2,---,m and >_[_,w; = 1, then [];. 2% < >, wsz;, with the equality hold if
andonly ifz; =2z, =--- = zp.

Theorem 4.1. Let A* = (oc,?j) be a g-ROFPR given by DM d; for alternative x; over alternative x;, where o = (,ufj, vﬁj) isa

nxn
g-ROFN, i=1,2,---,n, j=1,2,---.n, s=1,2,-.-,m and q > 1. Let w= (w;,ws,---,wn)" be the weight vector, where
ws €[0,1] denotes the weight of DM d;, s=1,2,---,m and > ,w,=1. Let the matrix A°= (oc,.fj) , where
nxn

Ws Ws
ol = (,uf] vfj) = (H;”:l (,ufj) T, (v;) ) then A is g-ROFPR, which is called the collective g-ROFPR.
Proof.
For any i,j=1,2,---,n, we obtain
m

c m SWS m w c SWS m w.
0<u,~j=H1(u,»j) <11 =1,0<v,,»=£11(v,-j) <Ir =1,

i~ T )™ — 11 (905)" = (v05)>" - v@5,

s=1 s=1

s=1

(1)) = 5 () () < S .

s=1 s=1

Based on Definition 2.2, the matrix A is a g-ROFPR, which is called the collective g-ROFPR. Q. E. D.

Theorem 4.2. The collective g-ROFPR A° = (ag-)nxnis acceptable consistent, where o, = (,u,-fﬁ vg) = (HL (,ufj)w I, (vfj)w)

is a q-ROFN, if all q-ROFPRs A’ = (ocfj) (s=1,2,---,m) are acceptable consistent, where o = (,ufj, vfj) is a g-ROEFN,
nxn

i=1,2,---,nj=1,2,---,n,s=1,2,--- mand q > 1.
Proof. Following the acceptable consistency of A* and based on Definition 3.3, we obtain
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M) - T (i) »l?n(fmn(nk) () n(5) -5

oy (T () ) (s () ) s 0™ (T2 () ) (T () ) (T ™)
- n(n-1)(n-2)
Ly vuh y N vl CRIC)) Dod (Ws‘“(ﬂ_fk))+2 (in(3)-5or, (win(15) ) 500, (i) ) 500 i)
- n—1)(n-2)
_ GZ, 12;7‘;21”1 1( ( (,],2.+]1[;S1 2)““ ( ) "( > m(“l)))‘
I S 3 (i) () o) (1) () o) )
= n(n-1)(n-2)
_ m GE" 22}’ ;llzk; 1 ln( U)Hn ,u]k) ]n(\ ) ln(\fj) —ln(";k)—ln(ﬂ(?k)
- s:zl n(n—1)(n-2)
- é(wsMCI( ) gs:f;l(wsa) -

where § is a consistency threshold value and 6 ¢ [0, 1]. Thus, A® is acceptable multiplicatively consistent. Q.E.D.

Definition 4.1. Let A° = (ocfj)nxn and A" = (oﬁj)nm be any two q-ROFPRs, where o = <,uu, U) is a g-ROFN, o} (,uﬁﬁ vf]) is
aq-ROFN,i=1,2,---,n,j=1,2,---,nand q > 1. The correlation coefficient CC(AS,A‘) between the q-ROFPRs A® = (oc%)
nxn
and A" = (a;) is defined as follows:
nxn

n—1<=n t n—-1n t
cc(, A 1 Doict Djmiet (:u?j:uij) N Doict 2ojmin <V$‘Vi') (10)
SR ) S ) 508 S )
i=1 j=i+1 'uu i=1 j=i+1 MU i=1 j=i+1 i=1 j=i+1
where 0 < CC(A,A") < 1. If A" = A", then CC(A°,A") = 1.
Based on Definition 4.1, we present a formula to calculate the weight w; of DM d;, shown as follows:
ws = Zt:l.lm,m‘ r#SCC( S7A[) (11)

Yo t2emt12em, e2sCC(ATAY)
where s =1,2,---,m.

Definition 4.2 Let A’ — («;) ~be a q-ROFPR, where o — (1, v5) is a g-ROFN, i = 1,2, ,nj = 1,2, ,m,5 = 1,2,-
andq > 1,and let A° = (oc9> o be a collective q-ROFPR, where o = (ufj,vfj) = (HL (u;) T, (vf]) ) is a q-ROFPR. The

consensus index GCI(A®) of A’ is defined as follows:

<‘ln(uu) ln(,ufj) +‘ln(vfj) —ln(v,?j)

wherei=1,2,---,n,j=1,2,---.n,s=1,2,---,mand q >
Let 7 be a consensus threshold value, where T € [0,1]. If GCI(AS) Tforalls=1,2,---,m, then each individual g-ROFPR

A= (ocfj) satisfy the consensus requirement. Otherwise, we need to improve the consensus levels of some g-ROFPRs. Let
nxn
GCI(A°) = max {GCI(A")} > 7, where T € [0, 1].
<tsm

n

GCI(A™) =

) (12)

i=1 j=i+l

Theorem 4.3. Let A’ = (oc%)nxn be a q-ROFPR, where o = (ufj,vfj) isaq-ROFN,i=1,2,---.n,j=1,2,---,n,s=1,2,---'m

and q > 1, and let A° = (oc;) be a collective q-ROFPR, where of = (,u;v;) = (]‘[g’:1 (u;)ws,ﬂg':] (v;)ws) is a q-ROFPR,
nxn

i=1,2,---,n, j=1,2,---,n and q>1. Let A® = ( ’5) be the adjusted q-ROFPR, where o= (,u’fj,v’fj) =

ij
( (mj)zfj y (ug)l—z,@j’@gj)ﬁff x (ij)lfﬁff), and 7,05 € (0,1). Then, GCI(A®) < GCI(A), where GCI(A®) = ily S!S,

(103) 105 (5) () ) 4 05, 5= =) T )05) ()

a q-ROFPR, i=1,2,---,n,j=1,2,---nand g > 1.
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Proof. Firstly, we prove

(1) ) I 009 < ) -G ) - )|
Because A" = (a/ff) e WhETE X = (fwicﬂ V/icj> = ((ﬂ/;) RS 1 P (ﬂfj)Wt-, (V/?j)ws x T e (ij)w:> is a g-ROFPR, we derive
) (< 1) ) e
B W‘ln<(” ) ff)lii?j) ' t:ieswfl“ (1) (14)
i) = (-2« & i) i
=In (,u ) +Ws<1 /13>1n< ) W5<1 P)ln(u )

(13)

and
ln(v’fj> = ln((v’fj)% X tzﬁ#s (v§j>W[> = Wsln( ) +t ]X[j#swfln(vt)

v§>l_m> o %;Wfln(vt) (15)

= W (9;1H<Vf]) +(1- ij)l u)) + [:Z]W[ln(vfj) - wsln(v§j>
= ln(v;;.) W, (1 - ij)ln(vfj) — W (1 - eg)m(v;j).
Based on Eq. (14), we obtain
‘ln(u’fj) - ln(,u’;-) = ‘)%ln(,ufj) + <l - ).fj)ln(,uu) <1n<,u§j> +w5<1 - },fj>ln(,ufj) - ws(l - )f])ln(uf]))’
o)+ (1)) (o) (i) (15

- (zg. + Ws(l - Ag.))ln (,ufj) (;S + ws<1 )S>)ln(,ufj> (16)
= (Af] + WS<1 — );)) In (u;) lr1<ufj>
= ((l Ws) /5 +w5> ln(ufj) - ln(,ufj)
Similarly, based on Eq. (15), we derive
‘ln(v’fj) — ln( > ‘0 (v;) + (l — ij>ln<vu) — ln(v;) +W5<l — 9;)111(\1”) —w5<1 — 9,5]>ln(vu>’
o5in () + (1= 05 )in(vg) —1n(v5) —ws (1= 65 )in(vg) +ws (1 - 65)n(vg) |
= ‘(9; +Ws(1 - ij))ln(vfj) - Hfjln(vfj) - WS<1 - U)ln(v;) 17
= ‘(6‘] +WS<1705->)1n<v§j) — 0§+WS(1 76;-) ln(vg)
)

Based on Egs. (16) and (17), we get

ln(,u’fj) - 1n</11>
= (1 = w5+ w) ln(/l,,) In (15
< (1 =wo) +wy)In(pg) ~In(us

- n(u) -

+[in(v}) - n(v5)
+ ((1 wy) 05 +ws) ln(v;j) - ln(ij)
+((1 = ws) + wy) ln(v§j> _ 1H<V5)

+‘ln< ) ln(vg).
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Then, based on Eq. (12), we get GCI (A’s> < GC(A). Q.E.D.

It should be noted that Theorem 4.3 does not consider the consistency of the adjusted g-ROFPRs. To guarantee that the
consistency does not change, we establish a model to revise the consensus for each individual g-ROFPR:

n-1 n
g=max) > ()f] + 0;)

i=1 j=i+1
lﬂ(ﬂ?j) - ln(,ufj) + ((1 — wy)6; +w5) ln(vl?j) - ln(vifj) )
<n(n-Tr,

2 n-1 n

i zan () + (1= 75)In(g) + Zadn (g ) + (1= 750)In () + (M-6)

e
GiIn(vg) + (1 — 65)In(vg) — (Hn(v‘) - (1 - ij>ln(v,.fj) - ()J?kln<vjk)—
(1-¢ )'“(Vﬁc) —igin(g) — (1 Z)In(ug,) | < m-tin-2e,

X, 05 €10,1], ,j=1,2,---,n, i <j.

lJ

5 (1 =wozg+w)

i=1 j=i+1

where 7 is a predefined acceptable consensus threshold value, ¢ is a predefined acceptable consistency threshold value, and
7,6 € [0,1].

The purpose of building the model (M-6) is to ensure that the adjusted g-ROFPRs satisfy the requirement of acceptable
consistency and acceptable consensus. In the model (M-6), the first constraint guarantees that the adjusted g-ROFPRs have
an acceptable consensus, the second constraint guarantees that the adjusted g-ROFPRs are acceptable consistent, and the
third constraint guarantees that the adjustment parameters Afj, 6,5] €1[0,1], wheres=1,2,---,m,i=1,2,---,n,j=1,2,---,n
and i < j. To obtain the numerical results of the model (M-6), the software package MATLAB is used in this paper.

4.2. A new GDM method with incomplete q-ROFPRs

In the following, we propose a new GDM method, called Algorithm 2, based on incomplete g-ROFPRs. Assume that there
are m DMs d;,d,, - - -, d, and assume that there are n alternatives x;,x;, - - -, X,. Let A’ be an incomplete g-ROFPR given by DM
ds, wheres =1,2,---,mand q > 1. Let § be a predefined threshold value, where ¢ € [0, 1], and let T be a predefined accept-
able consensus threshold value, where 7 < [0, 1]. The proposed Algorithm 2 for GDM is now presented as follows:

Algorithm 2:

Step 1: Apply the model (M-2) to determine the unknown q-ROFNs in incomplete q-ROFPRs A® (s = 1,2, - - -, m), which are
still denoted by q-ROFPRs A® (s =1,2,---,m).

Step 2: For those q-ROFPRs which satisfy MCI(A®) > 5, where ¢ is a predefined threshold value and § € [0, 1], derive their
acceptable multiplicative consistent q-ROFPRs A® = (oc%)nxn (s=1,2,---,m) by the model (M-4), where i=1,2,---,n,
j=1,2,---.nand q > 1.

Step 3: Based on the q-ROFPRs A’ (s=1,2,---,m) and Egs. (10) and (11), compute the weight w; of DM d;, where
s=1,2,---,m, to get the DMs’ weight vector w = (w;,Ws,--- ,Wm)T. Based on Theorem 4.1 and the g-ROFPRs A’
(s=1,2,---,m), get the collective g-ROFPR A°.

Step 4: Based on Eq. (12), if GCI(A®) < 7 for all s=1,2,---,m, where 7 is a predefined acceptable consensus threshold
value and 7 € [0, 1], then go to Step 5. Otherwise, apply the model (M-6) to adjust each g-ROFPR A’ to reach the acceptable
consensus level until GCI(A®) < T forall s = 1,2,---,m, where 7 € [0, 1]. Let A” be the adjusted g-ROFPR for A’. Aggregate all
the adjusted g-ROFPRs into the collective g-ROFPR A'C based on Theorem 4.1.

Step 5: Based on the model (M-5) and A obtained in Step 4, get the g-ROF priority weight ; = (uwi7 v(,,i) of alternative
X;, wherei=1,2,---,n

Step 6: Based on Definition 2.1, calculate S(w;) and H(w;) for w;, respectively, where S(w;) = Moy, = Vo H(w;) = Moy, + Vo,
and i=1,2,---,n. For any i,j=1,2,---,n and i##j, if S(w;) > S(w;), then alternative x; is better than alternative x;; if
S(wi) = S(w;) and H(w;) > H(w;), then alternative x; is better than alternative x;; if S(w;) = S(w;) and H(w;) = H(wj;), then
alternative x; and alternative x; have the same ranking order.

5. Case study and comparisons
5.1. Application example

Example 5.1. An award committee of a conference composed of four Professors d,, d, d; and d,4 to grant the best paper
award of a conference. There is a set X ={x;: John’s paper, x,: Mike’s paper, x3: David’s paper, x,: Frank’s paper} of four
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selected papers to be the candidates of the best paper award of the conference. Let ¢ = 3. Suppose that the incomplete g-
ROFPRs A', A%, A*> and A* are established by the Professors d;, d,, d; and d., respectively, shown as follows:
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(v05.%05)  (--) (0.7,0.5) (0.5,-)
o (~-)  (VO5305)  (--) (0.7,0.1)
(0.5,0.7) (= -) <€/63 v05)  (06,09)
(~,05) (0.1,0.7) (09,06)  (v05,305)
(V05,%05)  (05,08) (0.7,0.6) (= -)
p (08,05  (Y05305)  (06,-) (0.4,0.8)
(0.6,0.7) (-,06)  (V05305) (08,07
(- ) (0.8,0.4) (07,08)  (V05,705)
(V055,%05)  (07,06) (~,0.3) (0.5,0.9)
. (06,07)  (V05,705)  (08,04) (0.3,0.4)
0.3,-) (0.4,0.8) (G/ﬁ V05)  (07,-)
(0.9,0.5) (0.4,0.3) (-,0.7) (\/ﬁ Vﬁ)
(V05,905)  (--) (0.9,0.6) (0.6,0.5)
o | (v05,905)  (0.1,0.7) (=-)
(0.6,0.9) (07,01)  (V05,05) (03,06
(0.5,0.6) (- ) (06,03)  (V05,705)

Let 6 be the predefined threshold value, where 6 = 0.1, and let 7 be the given acceptable consensus threshold value, where
7 = 0.16. In order to obtain the numerical results, the software package MATLAB is used in this paper.
[Step 1] Four incomplete g-ROFPRs A, A%, A*> and A* are provided by the four Professors dy, d», d3 and d, , respectively, as

shown above. For the incomplete g-ROFPRs A', A%, A* and A*, we obtain their complete g-ROFPRs based on the model (M-2),
respectively, shown as follows:

(V05,905) (0.1332,09992) (07,05  (0.5,05357)
(0.9992,0.1332) (6/(% \Vﬁ) (0.988,0.0941)  (0.7,0.1)
(05,0.7) (09041,0.988)  (V05,905)  (0.6,0.9)
(0.5357,0.5) (0.1,0.7) (0.9,0.6) (\/ﬁ \V(ﬁ)
(v05,905)  (05,08) (07,06)  (0.8492,0.7218)
(08,05)  (V05,¥05) (06,08991) (0.4,0.8)
(0.6,0.7) (0.8991,06) (V05,705) (0.8,0.7)

(0.7218,0.8492)  (0.8,0.4) (0.7,0.8) (é/ﬁ, \3/@)
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(3/63,3/63) (0.7,0.6)  (0.4955,0.3)  (0.5,0.9)

P (06,07)  (V05,305) (08,04) (0.3,0.4)
(0.3,0.4955)  (0.4,0.8) (Vﬁm) (0.7,0.8693)
(0.9,0.5) (04,03)  (0.8693,0.7) (\/63\/(75)
(G/ﬁ&/ﬁ) (0.9997,0.0927)  (0.9,0.6) (0.6,0.5)

e (0.0927,0.9997) (Wﬂﬁ) (0.1,0.7)  (0.0731,0.9999)
(0.6,0.9) (0.7,0.1) (v055,v05) (0.3,0.6)

(0.5,0.6) (0.9999,0.0731)  (0.6,0.3) (3/63, \3/65)

[Step 2] Based on Eq. (4), we get MCI<A1> -0, MCI(AZ) —0.7254, MCI<A3) —0.6092 and MCI(A“) = 0.235. Because
MCI(A2> >4, MCI(A3) > & and MCI (A“) > 8, where MCI(AZ) = 0.7254, MCI<A3) = 0.6092, MCI(A“) — 0.235 and the prede-

fined threshold value § = 0.1, we can see that the g-ROFPRs A%, A*> and A* are unacceptable consistent. Based on the model
(M-4), the acceptable multiplicative consistent g-ROFPRs A%, A*> and A* are acquired as follows:

(6/0.5,3/0.5) (0.9016,0.617) (0.693,0.6027) (0.8492,0.7218)
(0.617,0.9016) (3/0.5.,&/0.5) (0.6,0.8991)  (0.5593,0.7974)

A2
(0.6027,0.693)  (0.8991,0.6) (6/0.5, \3/0.5) (0.7872,0.723)
(0.7218,0.8492) (0.7974,0.5593) (0.723,0.7872) (3/0.5,3/05)
(\3/0.5, 6/0.5) (0.6983,0.6983)  (0.4955,0.3)  (0.5605,0.8059)
, | (0.6983,0.6983) (3/0.5.,3/0‘5) (0.7983,0.5152) (0.3,0.4)
A =
(0.3,0.4955)  (0.5152,0.7983) (6/0.5, 3/0.5) (0.4823,0.9611)
(0.8059,0.5605) (0.4,0.3) (0.9611,0.4823) (3/0.57 3/0.5)
(6/0.5, \3/0.5) (0.9997,0.0927) (0.9225,0.5989) (0.5995,0.6304)
., | (0.0927,0.9997) (6/0.5,3/0.5) (0.1,0.7) (0.0731,0.9999)
A" =
(0.5989,0.9225) (0.7,0.1) (\3/0.5, \3/0.5) (0.3006,0.5947)

(0.6304,0.5995) (0.9999,0.0731) (0.5947,0.3006) (3/0.5,6/0.5)

[Step 3] Based on Eqs. (10) and (11) and the g-ROFPRs A', A?, A*> and A®, we get the DMs' weight vector
w = (0.2306,0.2692,0.2681,0.2321)". Based on Theorem 4.1 and the g-ROFPRs A', A%, A*> and A*, we get the collective g-
ROFPR A, shown as follows:

(é/ﬁﬁ/ﬁ) (0.5549,0.4483) (0.6784,0.4781) (0.6201,0.6726)
(0.4483,0.5549) (mm) (0.4794,0.4342) (0.3108,0.4328)
(0.4781,0.6784) (0.4342,0.4794) (\/ﬁ\/ﬁ) (0.5186,0.7844)
(0.6726,0.6201) (0.4328,0.3108) (0.7844,0.5186) (é/(ﬁ,\a/ﬁ)

[Step 4] Because the predefined acceptable consensus threshold value 7 =0.16, based on Eq. (12), we get
GCI(A1) ~0.63 > 0.16, GCI(AZ) =0.341 > 0.16, GCI(A3) = 0.2265 > 0.16 and GCI(A“) =0.6624 > 0.16. Then, based on

the model (M-6), we get the modified g-ROFPRs A', A%, A*> and A*, shown as follows:
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(105.403)

| (06424,04747)
A

(0.5,0.7)
(0.5584,0.5)

(¢05.v03)
(0.617,0.6428)
(0.6027,0.693)
(0.7218,0.8492)

(3/0.5, 6/0.5)
, | (06392,06983)
A =
(0.3799,0.5265)

(0.8059, 0.5605)
(3/0.5, 3/0.5)
(0.4483,0.5549)

At =
(0.4781,0.6784)

(0.6304,0.5995)

Furthermore, based on Theorem 4.1, we get the collective g-ROFPR A°, shown as follows:

(\3/0.5, \3/0.5)
(0.5803,0.5862)
A =
(0.4838,0.6454)

(0.6726,0.6146)

(0.4747,0.6424)
(¢05.v03)
(0.3794,0.6853)
(0.3497,0.4318)

(0.6428,0.617)
(v0s.705)
(0.5244,0.6)

(0.4679,0.4772)

(0.6983,0.6392)
(v, 35)
(0.5152,0.7983)
(0.4,0.3)
(0.5549,0.4483)
(v05.v03)
(0.4342,0.4795)

(0.4328,0.3108)

(0.5862,0.5803)
(3/0.5, \3/0.5)
(0.4592,0.6295)

(0.4103,0.3723)

(0.7,0.5)
(0.6853,0.3794)
(795,09
(0.9,0.6)

(0.693,0.6027)
(0.6,0.5244)
(vos.35)

(0.723,0.7872)

(0.5265,0.3799)
(0.7983,0.5152)
(795,09
(0.9611,0.4823)
(0.6784,0.4781)
(0.4795,0.4342)
(¢05.v03)

(0.7844,0.5186)

(0.6454, 0.4838)
(0.6295,0.4592)
(\3/0.5, 6/0.5)

(0.8367,0.5863)

(0.5,0.5584)
(0.4318,0.3497)
(0.6,0.9)
(¢, ca5)

(0.8492,0.7218)
(0.4772,0.4679)
(0.7872,0.723)

(v05.703)

(0.5605,0.8059)
(0.3,0.4)
(0.4823,0.9611)
(3/0.5, 6/0.5)
(0.5995,0.6304)
(0.3108,0.4328)

(0.5186,0.7844)

(v05.703)

(0.6146,0.6726)
(0.3723,0.4103)
(0.5863,0.8367)

(¢, 35)
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Based on Egs. (4) and (12), we obtain MCI(AI) — 0.0333, MCI (A2> —01, MCI(A3) —01, MCI(A“) — 0.0335, MCI(A°) = 0.03,

GCI(Al) —0.1249, GCI(AZ) —0.1533, GCI(A3) —0.1598 and GC1(A4) —0.1011.

[Step 5] Based on the obtained collective g-ROFPR A€, we get the g-ROF priority weight w; = (/’Lum vw,> of alternative x;,
where i =1,2,3,4, w; = (0.6582,0.8941), w, = (0.6490,0.8906), w3 = (0.5411,0.9441) and w4 = (0.6405,0.8950).

[Step 6] Based on the score function S shown in Definition 2.1, we get the score values S(w1), S(w,), S(w3) and S(w4) of
the g-ROF priority weights w:, w;, ws; and ws, respectively, where w; = (0.6582,0.8941), w, = (0.6490,0.8906),
w3 = (0.5411,0.9441), w4 = (0.6405,0.8950), S(w) = —0.4297, S(w,) = —0.4330, S(w3) = —0.6832 and S(w4) = —0.4542.
Because  S(w;) > S(wy) > S(w4) > S(ws), where  S(w;) =-0.4297, S(w,;)=-0.4330, S(ws;)=-0.6832 and
S(w4) = —0.4542, the ranking order of the alternatives xi, Xy, X3 and x4 is “X; = X = X4 = X3”.

5.2. Comparative analysis with two methods presented in [47] and [48]

The GDM methods presented in [47] and [48] only can deal with GDM with complete g-ROFPRs. Thus, it cannot be applied
to deal with Example 5.1. For the convenience of comparisons, let us consider the GDM problem regarding the rehabilitation

programs selection adopted from [48] (Please refer to pages 55-57 of [48] for more details), where three g-ROFPRs R', R* and
R? are provided by three DMs d, d, and ds, respectively, shown as follows:
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(v05,905)  (06,02) (0.8,0.6) (0.3,0.9)
a_| ©208 (v05,v05)  (05,06) (0.1,0.9)
(0.6,0.8) (06,05 (V05 Vﬁ) (0.4,0.8)
(09,0.3) (0.9,0.1) (08,04)  (V05,705)
(v05,905)  (07,02) (0.8,0.5) (0.3,0.6)
2 (02,07)  (V05,¥05)  (06,08) (02,0.9)
oo (0.5,0.8) (0.8,0.6) (mm) 03,08 |
(0.6,0.3) (0.9,0.2) (0.8,0.3) (\/ﬁ\/ﬁ)
(V05,905)  (06,04) (0.7,0.4) (0.6,0.7)
3 (0.4,0.6) (6/63, V05)  (05,06) (0.4,0.9)
oo (0.4,0.7) (06,05) (V05,905)  (05,08)
(0.7,0.6) (0.9,0.4) (08,05 (V05,705

We utilize our proposed Algorithm 2 to deal with this example given in [48]. Firstly, we investigate the consistency of
these three g-ROFPRs R, R? and R® by Eq. (4) of this paper. The consistency indexes MCI <R1 ) mcI (Rz) and MCI <R3> of these
three g-ROFPRs R', R? and R?, respectively, are MCI (R1> =0.6609, MCI(RZ) =0.3387 and MCI (R3) =0.2475. Let § =0.1. It

can be seen that the g-ROFPRs R', R? and R® do not have the acceptable consistency. Thus, the g-ROFPRs R', R* and R? should
be adjusted until they reach the acceptable consistency. By applying the model (M-4), the adjusted g-ROFPRs R',R* and R*
of the g-ROFPRs R!, R? and R?, respectively, are obtained, shown as follows:

(\3/0.5, 6/0.5) (0.6,0.2) (0.8,0.6) (0.3,0.9)
(0.2,0.6) (6/0.5, 3/0.5) (0.2847,0.6036) (0.1,0.9)
R =
(0.6,0.8)  (0.6036,0.2847) (6/0.5, \3/0.5) (0.2569,0.8927)
(0.9,0.3) (0.9,0.1) (0.8927,0.2569) (6/0.5, 3/0.5)
(\3/0.5, \3/0.5) (0.6657,0.2341) (0.8,0.5) (0.3165,0.5742)
| (0.2341,06657) (3/0.5,6/0.5) (0.5635,0.85) (0.2,0.9)
R =
(0.5,0.8) (0.85,0.5635) (\3/0.57 \3/0.5) (0.2919,0.8173)
(0.5742,0.3165) (0.9,0.2) (0.8173,0.2919) (\3/0.5, é/o.s)
(\3/0.5, 3/0.5) (0.7249,0.392)  (0.6951,0.4138) (0.6,0.7)
L | (0392,0.7249) (\3/0.5, \3/0.5> (0.5,0.6) (0.4002, 0.8988)
R¥ =
(0.4138,0.6951) (0.6,0.5) (\3/0.5, \3/0.5) (0.4795,0.8007)
(0.8988,0.4002) (0.8007,0.4795)

(0.7,0.6)

Based on Egs. (10) and (11), we get the DMs’ weight vector w = (0.3330,0.3348, 0.3322)7. Based on Theorem 4.1, we get

the collective g-ROFPR R
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(m,e/ms‘) (0.6615,0.2636) (0.7635,0.4989) (0.3845,0.7123)
(0.2636,0.6615) (\/ﬁ\/ﬁ) (0.4314,0.6756) (0.1999,0.8996)
(0.4989,0.7635) (0.6756,0.4314) (mm) (0.3299,0.8359)
(0.7123,0.3845) (0.8996,0.1999) (0.8359,0.3299) (\/6“5\/63)

Let the predefined acceptable consensus threshold value 7 = 0.1. Based on Eq. (12), we get GCI(RV) =0.2187 > 0.1,
GCI(R) =0.1022 > 0.1 and GCI(R*') = 0.2175 > 0.1. It is clear that GCI(R'") = max [GCI(R")], which means that the g-
1<s<3

ROFPR R' has the lower consensus degree than the other two g-ROFPRs R*" and R*". Hence, we first adjust the g-ROFPR
R to improve its consensus degree. Based on the model (M-6), we get the adjusted g-ROFPR RY, where

(V05,905)  (06.02636)  (08,0.5756)  (0.3845,0.7288)

(02636,06)  (V05,V05) (0.4314,0.6036)  (0.1999,09)

(0.5756,0.8)  (0.6036,0.4314) (\3/@, é/(ﬁ) (0.3299,0.8927)
(07288,0.3845)  (0.9,0.1999)  (0.8927,03299)  (V05,705)

1/

Based on Egs. (10) and (11), we get the DMs’ weight vector w = (0.3351,0.3330, 0.3319)7. Based on Theorem 4.1, we get
the collective g-ROFPR R®’, shown as follows:

(Wﬂﬁ) (0.6614,0.2890) (0.7635,0.4923) (0.4178,0.6642)
(0.2890,0.6614) (\/ﬁ\/ﬁ) (0.4952,0.6752) (0.2518,0.8996)
(0.4923,0.7635) (0.6752,0.4952) (\/(TS\/()T) (0.3586,0.8361)
(0.6642,0.4178) (0.8996,0.2518) (0.8361,0.3586) (\/ﬁ\/ﬁ)

Based on Eq. (12), we get GCI(R”) —0.0998 < 0.1, GC1(R2’) —~0.1268 > 0.1 and cc1<R3’) = 0.1670 > 0.1, where the pre-
defined threshold value & = 0.1. It is clear that GCI(R3') = max [GCI(R)], which means that the g-ROFPR R’ has the lower
consensus degree than the other two g-ROFPRs R' and R*. Hence, we further adjust the g-ROFPR R¥ to improve its consensus
degree. We get the adjusted qg-ROFPR R* via the model (M-6), where

(¥05,905)  (0.7230,03546) (0.6951,04380)  (04278,07)
| (03546,0.7230) (G/(E, m) (0.5,0.6117)  (0.2694,0.8988)

(0.4380,0.6951)  (0.6117,0.5) (Vo.s,&/o.s) (0.3585,0.8007)
(0.7,0.4278)  (0.8988,0.2694) (0.8007,0.3585) (3/0.5,6/0.5)

Based on Egs. (10) and (11), we get the DMs’ weight vector w = (0.3338,0.3328,0.3335)". Based on Theorem 4.1, we get
the collective g-ROFPR R“, shown as follows:

(é/ﬁ,e/ﬁ) (0.6609,0.2797) (0.7634,0.5014) (0.3735,0.6642)
| (0279706609 (3/63, 3/65) (0.4953,0.6794) (0.2209,0.8996)
= (0.5014,0.7634) (0.6794,0.4953) (G/ﬁ,é/ﬁ) (0.3256,0.8360)
(0.6642,0.3735) (0.8996,0.2209) (0.8360,0.3256) (3/@&/@)
Based on Eq. (4) and Eq. (12), we get MCI(R”):O.L MCI(RZ’):OJ, MCI(R3’):0.1, MCI(R®') = 0.0884,
GCI(RV) —0.0748, GCI(RZ’) —0.0942 and GCI(R3’) —0.0998. By plugging the collective g-ROFPR R’ into the model (M-
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5), we get the g-ROF priority weights w;, w,, ws; and w4, where w; = (0.5823,0.9247), w, = (0.3180,0.9892),
w3 = (0.4724,0.9636) and w4 = (0.8676,0.6945). Based on the score function S shown in Definition 2.1, we get the score
values S(wq), S(w,), S(ws) and S(ws) of the g-ROF priority weights w;, @,, ®s; and s, respectively, where
w; = (0.5823,0.9247), @, =(0.3180,0.9892), ;3 = (0.4724,0.9636), 4 = (0.8676,0.6945), S(w;) = —0.5932,
S(w,) = —0.9357, S(w3) = —0.7892 and S(w4) = 0.3181. Because S(wy4) > S(wq) > S(ws) > S(w,), where S(w;) = —0.5932,
S(w,) = —0.9357, S(ws;) =—-0.7892 and S(ws) =0.3181, the ranking order of the alternatives x;, X, x3 and Xx; is
“X4 = X1 = X3 = X3". The ranking order “x; = x; = X3 = x,” of the alternatives obtained by the proposed Algorithm 2 is the
same as the ones obtained by the GDM methods presented in Zhang et al. [47] and [48].

By comparing with the GDM methods presented in Zhang et al. [47] and [48], the proposed Algorithm 2 has the following
advantages:

(1) The GDM methods presented in Zhang et al. [47] and [48] do not have the capability to deal with incomplete g-
ROFPRs, whereas the proposed Algorithm 2 can deal with incomplete g-ROFPRs for GDM. The decision making infor-
mation in the proposed Algorithm 2 includes not only the complete information of DMs, but also the incomplete pref-
erence information, which enhances the integrity of decision making information.

(2) In Zhang et al. [47], DMs’ weights are set in advance, which seems to be unreasonable and ignores different impor-
tance of different DMs. Moreover, there is no rule regarding how to set these DMs’ weights in Zhang et al. [47]. In
the proposed Algorithm 2, after performing the consensus analysis, we offer a model to derive DMs’ weights. More-
over, DMs’ weights in Zhang et al. [47] are fixed and unchanged in the whole GDM process. By contrast, in the pro-
posed Algorithm 2, the weight vector of DMs varies with different g-ROFPRs. Therefore, the weight vector obtained
by the proposed Algorithm 2 is more flexible, which reflects the importance of different g-ROFPRs established by dif-
ferent DMs to match actual GDM processes.

(3) The consistency levels of preference relations have great influences on the derived priority vector and the ranking
order of alternatives. The higher the inconsistency level of a preference relation is, the more the irrationality of the
ranking order of alternatives is. Therefore, to ensure reasonable ranking orders of alternatives, consistency levels of
preference relations should be kept within a certain range. When a consistency level of a preference relation is beyond
an acceptable range, the preference relation should be adjusted into a new one with an acceptable consistency. How-
ever, the GDM method presented in Zhang et al. [47] does not consider the consistency adjustment. By contrast, the
proposed Algorithm 2 proposes an effective technique to adjust an unacceptable consistent g-ROFPR into an accept-

able consistent g-ROFPR. Taking the aforementioned three g-ROFPRs R', R? and R® as an example, based on Eq. (4), we
get MCI(R1) = 0.6609, MCI(RZ) —0.3387 and MCI(R3) — 0.2475. Let the predefined threshold value ¢ = 0.1. Because

MCI(R1> > 0.1, MCI(R2> >0.1 and MCI(R3) > 0.1, where MCI(Rl) — 0.6609, MCI(RZ) —0.3387 and

MCI (R3> =0.2475, it is concluded that the g-ROFPRs R!, R?, and R® do not have an acceptable consistency. The

GDM method presented in Zhang et al. [47] obtains the priority vector of alternatives directly from the three g-ROFPRs
R', R? and R® by using a programming model without the consideration of the consistency adjustment. The proposed
Algorithm 2 has the advantage that it has the capability to deal with unacceptable consistent g-ROFPRs and provides
an adjustment process to improve the consistency of unacceptable consistent g-ROFPRs.

(4) While examining and improving the consistency of a g-ROFPR, Zhang et al.’s method [48] needs to establish a multi-
plicative consistent g-ROFPR besides the original g-ROFPR itself, whereas the proposed Algorithm 2 has the advantage
that it can complete this process only based on the initial g-ROFPR. Moreover, to improve the consistency of a g-
ROFPR, Zhang et al.’s method [48] may need several iteration times, whereas the proposed Algorithm 2 has the advan-
tage that it improves the consistency of a g-ROFPR only by solving a model.

(5) To improve the consistency of a g-ROFPR, all of the preference information in the g-ROFPR will be approached
to its consistent g-ROFPR at the same time. It means that once a g-ROFPR does not meet the consistency requirement,
all of the preference information in the g-ROFPR will be adjusted to close to the ones of its consistent g-ROFPR,
which may make the original preference information to lose its original characteristics. For example, the adjusted

g-ROFPRs R'", R?", and R*” of the g-ROFPRs R', R*> and R® obtained by Zhang et al.’s method [48], respectively, are as
follows:

(3/0.5,\3/0.5> (0.6000,0.3127) (0.5377,0.4241) (0.2190,0.7505)
| (03127060000 (V05,905) (0.3765,05698) (0.1274,0.8378)
R =

(0.4241,0.5377) (0.5698,0.3765) (6/0.5,6/0.5) (0.1841,0.8000)
(0.7505,0.2190) (0.8378,0.1274) (0.8000,0.1841) (3/0.5,\3/0.5)
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(m, m)
(0.2515,0.7044)

(0.7044,0.2515)
(\3/0.5, 6/0.5)

(0.6625,0.3028)
(0.4331,0.5544)

(0.3244,0.6454)
(0.1489,0.8298)

Rz//
(0.3028,0.6625) (0.5544,0.4331) (3/0.5,3/0.5) (0.1837,0.7999)
(0.6454,0.3244) (0.8298,0.1489) (0.7999,0.1837) (\3/0.5,3/0.5)
(3/0.5,6/0.5> (0.6000,0.4000) (0.6000,0.4000) (0.3877,0.6123)
| (0.4000,06000) (3/0.5,\3/0.5) (0.5000,0.5000) (0.2968,0.7032)
R =

(0.4000, 0.6000)
(0.6123,0.3877)

(0.5000,0.5000)
(0.7032,0.2968)

(m, m)
(0.7032,0.2968)

(0.2968,0.7032)
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In order to further compare the performances of different GDM methods, we propose a distance measure D(Al,A2> between

two g-ROFPRs A' and A2, shown as follows:
D0 #) =y 3 3 (1n04) -6+ () ~1n(5)

where A' = (oc,})nxn, o = (,u;vl}) is a g-ROFN, A% = (aé)nxn, o2 = (u,?j,v,?j) isa g-ROFN, i=1,2,---,n,j=1,2,---,n and

(18)

q > 1. Based on Eq. (18), we obtain the distance D(R", R"”) between the original g-ROFPRs R¥ (k = 1,2,3) and the adjusted
g-ROFPRs R¥ (k =1,2,3) obtained by Zhang et al’s method [48], where D(R],Rl"> — 0.2594, D(RZ,RZ") — 02197 and
D<R3,R3”) = 0.1752. In the same way, based on Eq. (18), we get the distance D(Rk,Rk') between the original g-ROFPRs R¢
(k =1,2,3) and the adjusted g-ROFPRs R¥ (k = 1,2, 3) obtained by the proposed Algorithm 2, where D(R1 ,R") = 0.1605,
D(RZ,RZ') =0.0398 and D(R3,R3') = 0.1244. By comparing the adjusted q-ROFPRs obtained by the proposed Algorithm 2
with the adjusted g-ROFPRs obtained by Zhang et al.’s GDM method [48], it can be seen that the adjusted g-ROFPRs obtained

by the proposed Algorithm 2 have the less deviation from the original g-ROFPRs due to the fact that D(R", Rk') < D(Rk, R"”)

for all k =1,2,3. Obviously, the proposed Algorithm 2 has the advantage that it possesses the smallest information loss
compared to Zhang et al’s method [48].

(6) The GDM methods presented in Zhang et al. [47] and [48] ignored the consensus reaching processes. To achieve the
consensus of g-ROFPRs has been recognized as one of essence goals in GDM [31]. The proposed Algorithm 2 has the advan-
tage that it develops a model to improve the consensus of g-ROFPRs, which can ensure the smallest information loss to reach

an acceptable consistency of the adjusted g-ROFPRs. Based on Eq. (12), the consensus indices GCI (Rl>, Gcl (R2> and GCI <R3)
of the original g-ROFPRs R', R* and R?, respectively, used in Zhang et al’s method [47] are GCI(R1> =0.1533,
GCI(RZ) —0.1155 and GCI(R3) — 0.2008. Based on Eq. (12), the consensus indices GCI(R“), GCI(RZ’) and GCI(R3’) of the
adjusted g-ROFPRs RY, R® and R®, respectively, obtained by Zhang et al’s method [48] are GCI(Rf) =0.1273,
GCI(RZ’) —0.1003 and GCI(R’) —0.1631. The consensus indices GCI (Rl), GCI(R2> and GCI <R3) of the adjusted g-ROFPRs
R', R* and R?,6 respectively, obtained by the proposed Algorithm 2 are GCI(R]> =0.0748, GCI(RZ) =0.0942 and

GCl <R3 ) = 0.0998. Obviously, the adjusted g-ROFPRs obtained by the proposed Algorithm 2 get higher consensus degrees

than the ones of the initial g-ROFPRs used in Zhang et al.’s method [47] and the ones of the adjusted q-ROFPRs obtained
by Zhang et al.’s method [48].

6. Conclusions

In this paper, we have proposed a new group decision making (GDM) method based on the multiplicative consistency-
and-consensus preference analysis for incomplete g-rung orthopair fuzzy preference relations (q-ROFPRs). Firstly, we pre-
sent the multiplicative consistency concept for g-ROFPRs. Following the proposed multiplicative consistency concept of g-
ROFPRs, we propose a consistency index for a g-ROFPR. Then, the definition of an acceptable consistent g-ROFPR is defined.
A model for estimating unknown values in an incomplete g-ROFPR is proposed through minimizing the consistency index.
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Meanwhile, we propose an optimization-based algorithm to get the acceptable multiplicative consistent g-ROFPR when a g-
ROFPR is inconsistent. Subsequently, we propose a new individual decision making method with an incomplete g-ROFPR.
Afterwards, we propose a consensus measurement method for gauging the consensus degree of decision makers in GDM pro-
cesses. Furthermore, we propose a consensus improvement method to complete the consensus reaching process. When all
experts reach a consensus level, a model is set up to obtain the priority vector of each expert, and then the ranking order of
alternatives can be obtained. Afterward, we offer a GDM method based on the preference analysis for incomplete g-ROFPRs.
Finally, we apply the proposed GDM method to deal with an application example and make some comparative analyses with
Zhang et al’s method [47] and Zhang et al.’s method [48]. The proposed GDM method outperforms Zhang et al.’s method [47]
and Zhang et al.’s method [48] for GDM in incomplete g-rung orthopair fuzzy environments. It is worth of future research to
propose new multiattribute decision making methods based on [1,2,3,4,8,18,25,28,32,40,43].
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